These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 21821280)

  • 21. The delayed addition of human mesenchymal stem cells to pre-formed endothelial cell networks results in functional vascularization of a collagen-glycosaminoglycan scaffold in vivo.
    McFadden TM; Duffy GP; Allen AB; Stevens HY; Schwarzmaier SM; Plesnila N; Murphy JM; Barry FP; Guldberg RE; O'Brien FJ
    Acta Biomater; 2013 Dec; 9(12):9303-16. PubMed ID: 23958783
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vitro and in vivo evaluation of differentially demineralized cancellous bone scaffolds combined with human bone marrow stromal cells for tissue engineering.
    Mauney JR; Jaquiéry C; Volloch V; Heberer M; Martin I; Kaplan DL
    Biomaterials; 2005 Jun; 26(16):3173-85. PubMed ID: 15603812
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Initial cell pre-cultivation can maximize ECM mineralization by human mesenchymal stem cells on silk fibroin scaffolds.
    Thimm BW; Wüst S; Hofmann S; Hagenmüller H; Müller R
    Acta Biomater; 2011 May; 7(5):2218-28. PubMed ID: 21300186
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vascularization of hollow channel-modified porous silk scaffolds with endothelial cells for tissue regeneration.
    Zhang W; Wray LS; Rnjak-Kovacina J; Xu L; Zou D; Wang S; Zhang M; Dong J; Li G; Kaplan DL; Jiang X
    Biomaterials; 2015 Jul; 56():68-77. PubMed ID: 25934280
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accelerating the early angiogenesis of tissue engineering constructs in vivo by the use of stem cells cultured in matrigel.
    Schumann P; Lindhorst D; von See C; Menzel N; Kampmann A; Tavassol F; Kokemüller H; Rana M; Gellrich NC; Rücker M
    J Biomed Mater Res A; 2014 Jun; 102(6):1652-62. PubMed ID: 23776037
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synergistic angiogenesis promoting effects of extracellular matrix scaffolds and adipose-derived stem cells during wound repair.
    Liu S; Zhang H; Zhang X; Lu W; Huang X; Xie H; Zhou J; Wang W; Zhang Y; Liu Y; Deng Z; Jin Y
    Tissue Eng Part A; 2011 Mar; 17(5-6):725-39. PubMed ID: 20929282
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Collagen-embedded hydroxylapatite-beta-tricalcium phosphate-silicon dioxide bone substitute granules assist rapid vascularization and promote cell growth.
    Ghanaati SM; Thimm BW; Unger RE; Orth C; Kohler T; Barbeck M; Müller R; Kirkpatrick CJ
    Biomed Mater; 2010 Apr; 5(2):25004. PubMed ID: 20208127
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An in vitro assessment of a cell-containing collagenous extracellular matrix-like scaffold for bone tissue engineering.
    Pedraza CE; Marelli B; Chicatun F; McKee MD; Nazhat SN
    Tissue Eng Part A; 2010 Mar; 16(3):781-93. PubMed ID: 19778181
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel method to improve vascularization of tissue engineered constructs with biodegradable fibers.
    Wong HK; Ivan Lam CR; Wen F; Mark Chong SK; Tan NS; Jerry C; Pal M; Tan LP
    Biofabrication; 2016 Jan; 8(1):015004. PubMed ID: 26741237
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Engineering vessel-like networks within multicellular fibrin-based constructs.
    Lesman A; Koffler J; Atlas R; Blinder YJ; Kam Z; Levenberg S
    Biomaterials; 2011 Nov; 32(31):7856-69. PubMed ID: 21816465
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Use of human mesenchymal cells to improve vascularization in a mouse model for scaffold-based dermal regeneration.
    Egaña JT; Fierro FA; Krüger S; Bornhäuser M; Huss R; Lavandero S; Machens HG
    Tissue Eng Part A; 2009 May; 15(5):1191-200. PubMed ID: 18925832
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vivo biocompatibility and vascularization of biodegradable porous polyurethane scaffolds for tissue engineering.
    Laschke MW; Strohe A; Scheuer C; Eglin D; Verrier S; Alini M; Pohlemann T; Menger MD
    Acta Biomater; 2009 Jul; 5(6):1991-2001. PubMed ID: 19286433
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of macroporous protein scaffolds on bone tissue engineering from bone marrow stem cells.
    Kim HJ; Kim UJ; Vunjak-Novakovic G; Min BH; Kaplan DL
    Biomaterials; 2005 Jul; 26(21):4442-52. PubMed ID: 15701373
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis and inflammatory response of a novel silk fibroin scaffold containing BMP7 adenovirus for bone regeneration.
    Zhang Y; Wu C; Luo T; Li S; Cheng X; Miron RJ
    Bone; 2012 Oct; 51(4):704-13. PubMed ID: 22796416
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of human osteoblasts on proliferation and neo-vessel formation of human umbilical vein endothelial cells in a long-term 3D co-culture on polyurethane scaffolds.
    Hofmann A; Ritz U; Verrier S; Eglin D; Alini M; Fuchs S; Kirkpatrick CJ; Rommens PM
    Biomaterials; 2008 Nov; 29(31):4217-26. PubMed ID: 18692894
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Promotion of osteogenesis in tissue-engineered bone by pre-seeding endothelial progenitor cells-derived endothelial cells.
    Yu H; Vandevord PJ; Gong W; Wu B; Song Z; Matthew HW; Wooley PH; Yang SY
    J Orthop Res; 2008 Aug; 26(8):1147-52. PubMed ID: 18327810
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Three-dimensional spheroids of adipose-derived mesenchymal stem cells are potent initiators of blood vessel formation in porous polyurethane scaffolds.
    Laschke MW; Schank TE; Scheuer C; Kleer S; Schuler S; Metzger W; Eglin D; Alini M; Menger MD
    Acta Biomater; 2013 Jun; 9(6):6876-84. PubMed ID: 23415749
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The development of tissue-engineered bone of different origin through endochondral and intramembranous ossification following the implantation of mesenchymal stem cells and osteoblasts in a murine model.
    Tortelli F; Tasso R; Loiacono F; Cancedda R
    Biomaterials; 2010 Jan; 31(2):242-9. PubMed ID: 19796807
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ovine bone- and marrow-derived progenitor cells and their potential for scaffold-based bone tissue engineering applications in vitro and in vivo.
    Reichert JC; Woodruff MA; Friis T; Quent VM; Gronthos S; Duda GN; Schütz MA; Hutmacher DW
    J Tissue Eng Regen Med; 2010 Oct; 4(7):565-76. PubMed ID: 20568083
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Facilitating tissue infiltration and angiogenesis in a tubular collagen scaffold.
    Gérard C; Doillon CJ
    J Biomed Mater Res A; 2010 May; 93(2):615-24. PubMed ID: 19591233
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.