These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 21821280)
61. Mixing conditions for cell scaffolds affect the bone formation induced by bone engineering with human bone marrow stromal cells, beta-tricalcium phosphate granules, and rhBMP-2. Uchida M; Agata H; Sagara H; Shinohara Y; Kagami H; Asahina I J Biomed Mater Res A; 2009 Oct; 91(1):84-91. PubMed ID: 18767063 [TBL] [Abstract][Full Text] [Related]
62. Engineering calcium deposits on polycaprolactone scaffolds for intravascular applications using primary human osteoblasts. Zhu B; Bailey SR; Mauli Agrawal C J Tissue Eng Regen Med; 2011 Apr; 5(4):324-36. PubMed ID: 20827712 [TBL] [Abstract][Full Text] [Related]
63. Adipose precursor cells (preadipocytes) induce formation of new vessels in fibrin glue on the newly developed cylinder chorioallantoic membrane model (CAM). Borges J; Torío-Padrón N; Momeni A; Mueller MC; Tegtmeier FT; Stark BG Minim Invasive Ther Allied Technol; 2006; 15(4):246-52. PubMed ID: 16966139 [TBL] [Abstract][Full Text] [Related]
64. Endothelial and stem cell interactions on dielectrophoretically aligned fibrous silk fibroin-chitosan scaffolds. Gupta V; Davis G; Gordon A; Altman AM; Reece GP; Gascoyne PR; Mathur AB J Biomed Mater Res A; 2010 Aug; 94(2):515-23. PubMed ID: 20186770 [TBL] [Abstract][Full Text] [Related]
65. Fine-tuning scaffolds for tissue regeneration: effects of formic acid processing on tissue reaction to silk fibroin. Ghanaati S; Orth C; Unger RE; Barbeck M; Webber MJ; Motta A; Migliaresi C; James Kirkpatrick C J Tissue Eng Regen Med; 2010 Aug; 4(6):464-72. PubMed ID: 20112273 [TBL] [Abstract][Full Text] [Related]
66. In vitro biomimetic construction of hydroxyapatite-porcine acellular dermal matrix composite scaffold for MC3T3-E1 preosteoblast culture. Zhao H; Wang G; Hu S; Cui J; Ren N; Liu D; Liu H; Cao C; Wang J; Wang Z Tissue Eng Part A; 2011 Mar; 17(5-6):765-76. PubMed ID: 20964580 [TBL] [Abstract][Full Text] [Related]
67. The dosage dependence of VEGF stimulation on scaffold neovascularisation. Davies N; Dobner S; Bezuidenhout D; Schmidt C; Beck M; Zisch AH; Zilla P Biomaterials; 2008 Sep; 29(26):3531-8. PubMed ID: 18541296 [TBL] [Abstract][Full Text] [Related]
68. Increase in cell migration and angiogenesis in a composite silk scaffold for tissue-engineered ligaments. Seo YK; Yoon HH; Song KY; Kwon SY; Lee HS; Park YS; Park JK J Orthop Res; 2009 Apr; 27(4):495-503. PubMed ID: 18924141 [TBL] [Abstract][Full Text] [Related]
69. Fabrication of nano-hydroxyapatite on electrospun silk fibroin nanofiber and their effects in osteoblastic behavior. Wei K; Li Y; Kim KO; Nakagawa Y; Kim BS; Abe K; Chen GQ; Kim IS J Biomed Mater Res A; 2011 Jun; 97(3):272-80. PubMed ID: 21442728 [TBL] [Abstract][Full Text] [Related]
70. Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering. Shor L; Güçeri S; Chang R; Gordon J; Kang Q; Hartsock L; An Y; Sun W Biofabrication; 2009 Mar; 1(1):015003. PubMed ID: 20811098 [TBL] [Abstract][Full Text] [Related]
71. Fabrication and properties of the electrospun polylactide/silk fibroin-gelatin composite tubular scaffold. Wang S; Zhang Y; Wang H; Yin G; Dong Z Biomacromolecules; 2009 Aug; 10(8):2240-4. PubMed ID: 19722559 [TBL] [Abstract][Full Text] [Related]
72. Osteogenic and adipogenic differentiation of rat bone marrow cells on non-mulberry and mulberry silk gland fibroin 3D scaffolds. Mandal BB; Kundu SC Biomaterials; 2009 Oct; 30(28):5019-30. PubMed ID: 19577292 [TBL] [Abstract][Full Text] [Related]
73. Experimental approaches to vascularisation within tissue engineering constructs. Sarker M; Chen XB; Schreyer DJ J Biomater Sci Polym Ed; 2015; 26(12):683-734. PubMed ID: 26053971 [TBL] [Abstract][Full Text] [Related]
74. Improving vascularization of engineered bone through the generation of pro-angiogenic effects in co-culture systems. Unger RE; Dohle E; Kirkpatrick CJ Adv Drug Deliv Rev; 2015 Nov; 94():116-25. PubMed ID: 25817732 [TBL] [Abstract][Full Text] [Related]
75. Decellularized Diaphragmatic Muscle Drives a Constructive Angiogenic Response In Vivo. Alvarèz Fallas ME; Piccoli M; Franzin C; Sgrò A; Dedja A; Urbani L; Bertin E; Trevisan C; Gamba P; Burns AJ; De Coppi P; Pozzobon M Int J Mol Sci; 2018 Apr; 19(5):. PubMed ID: 29710813 [TBL] [Abstract][Full Text] [Related]
76. Accelerating vascularization in polycaprolactone scaffolds by endothelial progenitor cells. Singh S; Wu BM; Dunn JC Tissue Eng Part A; 2011 Jul; 17(13-14):1819-30. PubMed ID: 21395445 [TBL] [Abstract][Full Text] [Related]
77. Platelet lysate coating on scaffolds directly and indirectly enhances cell migration, improving bone and blood vessel formation. Leotot J; Coquelin L; Bodivit G; Bierling P; Hernigou P; Rouard H; Chevallier N Acta Biomater; 2013 May; 9(5):6630-40. PubMed ID: 23403167 [TBL] [Abstract][Full Text] [Related]
78. Tuning graft- and host-derived vascularization in modular tissue constructs: a potential role of HIF1 activation. Lam GC; Sefton MV Tissue Eng Part A; 2015 Feb; 21(3-4):803-16. PubMed ID: 25379774 [TBL] [Abstract][Full Text] [Related]
79. Vascular Pedicle and Microchannels: Simple Methods Toward Effective In Vivo Vascularization of 3D Scaffolds. Rnjak-Kovacina J; Gerrand YW; Wray LS; Tan B; Joukhdar H; Kaplan DL; Morrison WA; Mitchell GM Adv Healthc Mater; 2019 Dec; 8(24):e1901106. PubMed ID: 31714024 [TBL] [Abstract][Full Text] [Related]
80. Prolonged presence of VEGF promotes vascularization in 3D bioprinted scaffolds with defined architecture. Poldervaart MT; Gremmels H; van Deventer K; Fledderus JO; Oner FC; Verhaar MC; Dhert WJ; Alblas J J Control Release; 2014 Jun; 184():58-66. PubMed ID: 24727077 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]