BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 21821710)

  • 1. FERM domain mutations induce gain of function in JAK3 in adult T-cell leukemia/lymphoma.
    Elliott NE; Cleveland SM; Grann V; Janik J; Waldmann TA; Davé UP
    Blood; 2011 Oct; 118(14):3911-21. PubMed ID: 21821710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Absence of gain-of-function JAK1 and JAK3 mutations in adult T cell leukemia/lymphoma.
    Kameda T; Shide K; Shimoda HK; Hidaka T; Kubuki Y; Katayose K; Taniguchi Y; Sekine M; Kamiunntenn A; Maeda K; Nagata K; Matsunaga T; Shimoda K
    Int J Hematol; 2010 Sep; 92(2):320-5. PubMed ID: 20697856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct Acute Lymphoblastic Leukemia (ALL)-associated Janus Kinase 3 (JAK3) Mutants Exhibit Different Cytokine-Receptor Requirements and JAK Inhibitor Specificities.
    Losdyck E; Hornakova T; Springuel L; Degryse S; Gielen O; Cools J; Constantinescu SN; Flex E; Tartaglia M; Renauld JC; Knoops L
    J Biol Chem; 2015 Nov; 290(48):29022-34. PubMed ID: 26446793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differences in phosphorylation of the IL-2R associated JAK/STAT proteins between HTLV-I(+), IL-2-independent and IL-2-dependent cell lines and uncultured leukemic cells from patients with adult T-cell lymphoma/leukemia.
    Zhang Q; Lee B; Korecka M; Li G; Weyland C; Eck S; Gessain A; Arima N; Lessin SR; Shaw LM; Luger S; Kamoun M; Wasik MA
    Leuk Res; 1999 Apr; 23(4):373-84. PubMed ID: 10229324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Janus kinase 3-activating mutations identified in natural killer/T-cell lymphoma.
    Koo GC; Tan SY; Tang T; Poon SL; Allen GE; Tan L; Chong SC; Ong WS; Tay K; Tao M; Quek R; Loong S; Yeoh KW; Yap SP; Lee KA; Lim LC; Tan D; Goh C; Cutcutache I; Yu W; Ng CC; Rajasegaran V; Heng HL; Gan A; Ong CK; Rozen S; Tan P; Teh BT; Lim ST
    Cancer Discov; 2012 Jul; 2(7):591-7. PubMed ID: 22705984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. JAK/STAT pathway directed therapy of T-cell leukemia/lymphoma: Inspired by functional and structural genomics.
    Waldmann TA
    Mol Cell Endocrinol; 2017 Aug; 451():66-70. PubMed ID: 28214593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel JAK3-Activating Mutations in Extranodal NK/T-Cell Lymphoma, Nasal Type.
    Sim SH; Kim S; Kim TM; Jeon YK; Nam SJ; Ahn YO; Keam B; Park HH; Kim DW; Kim CW; Heo DS
    Am J Pathol; 2017 May; 187(5):980-986. PubMed ID: 28284718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variegated RHOA mutations in adult T-cell leukemia/lymphoma.
    Nagata Y; Kontani K; Enami T; Kataoka K; Ishii R; Totoki Y; Kataoka TR; Hirata M; Aoki K; Nakano K; Kitanaka A; Sakata-Yanagimoto M; Egami S; Shiraishi Y; Chiba K; Tanaka H; Shiozawa Y; Yoshizato T; Suzuki H; Kon A; Yoshida K; Sato Y; Sato-Otsubo A; Sanada M; Munakata W; Nakamura H; Hama N; Miyano S; Nureki O; Shibata T; Haga H; Shimoda K; Katada T; Chiba S; Watanabe T; Ogawa S
    Blood; 2016 Feb; 127(5):596-604. PubMed ID: 26574607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Jak3, STAT3, and STAT5 inhibit expression of miR-22, a novel tumor suppressor microRNA, in cutaneous T-Cell lymphoma.
    Sibbesen NA; Kopp KL; Litvinov IV; Jønson L; Willerslev-Olsen A; Fredholm S; Petersen DL; Nastasi C; Krejsgaard T; Lindahl LM; Gniadecki R; Mongan NP; Sasseville D; Wasik MA; Iversen L; Bonefeld CM; Geisler C; Woetmann A; Odum N
    Oncotarget; 2015 Aug; 6(24):20555-69. PubMed ID: 26244872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Th17 cytokine differentiation and loss of plasticity after SOCS1 inactivation in a cutaneous T-cell lymphoma.
    Ehrentraut S; Schneider B; Nagel S; Pommerenke C; Quentmeier H; Geffers R; Feist M; Kaufmann M; Meyer C; Kadin ME; Drexler HG; MacLeod RA
    Oncotarget; 2016 Jun; 7(23):34201-16. PubMed ID: 27144517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. JAK3 in clear cell renal cell carcinoma: mutational screening and clinical implications.
    de Martino M; Gigante M; Cormio L; Prattichizzo C; Cavalcanti E; Gigante M; Ariano V; Netti GS; Montemurno E; Mancini V; Battaglia M; Gesualdo L; Carrieri G; Ranieri E
    Urol Oncol; 2013 Aug; 31(6):930-7. PubMed ID: 21868263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Jak1 has a dominant role over Jak3 in signal transduction through γc-containing cytokine receptors.
    Haan C; Rolvering C; Raulf F; Kapp M; Drückes P; Thoma G; Behrmann I; Zerwes HG
    Chem Biol; 2011 Mar; 18(3):314-23. PubMed ID: 21439476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CP-690,550, a therapeutic agent, inhibits cytokine-mediated Jak3 activation and proliferation of T cells from patients with ATL and HAM/TSP.
    Ju W; Zhang M; Jiang JK; Thomas CJ; Oh U; Bryant BR; Chen J; Sato N; Tagaya Y; Morris JC; Janik JE; Jacobson S; Waldmann TA
    Blood; 2011 Feb; 117(6):1938-46. PubMed ID: 21106989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Loss of function mutations in PTPN6 promote STAT3 deregulation via JAK3 kinase in diffuse large B-cell lymphoma.
    Demosthenous C; Han JJ; Hu G; Stenson M; Gupta M
    Oncotarget; 2015 Dec; 6(42):44703-13. PubMed ID: 26565811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. JAK3 deregulation by activating mutations confers invasive growth advantage in extranodal nasal-type natural killer cell lymphoma.
    Bouchekioua A; Scourzic L; de Wever O; Zhang Y; Cervera P; Aline-Fardin A; Mercher T; Gaulard P; Nyga R; Jeziorowska D; Douay L; Vainchenker W; Louache F; Gespach C; Solary E; Coppo P
    Leukemia; 2014 Feb; 28(2):338-48. PubMed ID: 23689514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NSC114792, a novel small molecule identified through structure-based computational database screening, selectively inhibits JAK3.
    Kim BH; Jee JG; Yin CH; Sandoval C; Jayabose S; Kitamura D; Bach EA; Baeg GH
    Mol Cancer; 2010 Feb; 9():36. PubMed ID: 20149240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated genomic sequencing reveals mutational landscape of T-cell prolymphocytic leukemia.
    Kiel MJ; Velusamy T; Rolland D; Sahasrabuddhe AA; Chung F; Bailey NG; Schrader A; Li B; Li JZ; Ozel AB; Betz BL; Miranda RN; Medeiros LJ; Zhao L; Herling M; Lim MS; Elenitoba-Johnson KS
    Blood; 2014 Aug; 124(9):1460-72. PubMed ID: 24825865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined immunodeficiency evolving into predominant CD4+ lymphopenia caused by somatic chimerism in JAK3.
    Ban SA; Salzer E; Eibl MM; Linder A; Geier CB; Santos-Valente E; Garncarz W; Lion T; Ott R; Seelbach C; Boztug K; Wolf HM
    J Clin Immunol; 2014 Nov; 34(8):941-53. PubMed ID: 25205547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional RNAi screen targeting cytokine and growth factor receptors reveals oncorequisite role for interleukin-2 gamma receptor in JAK3-mutation-positive leukemia.
    Agarwal A; MacKenzie RJ; Eide CA; Davare MA; Watanabe-Smith K; Tognon CE; Mongoue-Tchokote S; Park B; Braziel RM; Tyner JW; Druker BJ
    Oncogene; 2015 Jun; 34(23):2991-9. PubMed ID: 25109334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Janus kinase 3 regulates adherens junctions and epithelial mesenchymal transition through β-catenin.
    Mishra J; Das JK; Kumar N
    J Biol Chem; 2017 Oct; 292(40):16406-16419. PubMed ID: 28821617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.