BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 21821731)

  • 41. Carotid body contribution to the physio-pathological consequences of intermittent hypoxia: role of nitro-oxidative stress and inflammation.
    Iturriaga R
    J Physiol; 2023 Dec; 601(24):5495-5507. PubMed ID: 37119020
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Crucial Role of the Carotid Body Chemoreceptors on the Development of High Arterial Blood Pressure During Chronic Intermittent Hypoxia.
    Iturriaga R; Andrade DC; Del Rio R
    Adv Exp Med Biol; 2015; 860():255-60. PubMed ID: 26303489
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enhanced carotid body chemosensory activity and the cardiovascular alterations induced by intermittent hypoxia.
    Iturriaga R; Andrade DC; Del Rio R
    Front Physiol; 2014; 5():468. PubMed ID: 25520668
    [TBL] [Abstract][Full Text] [Related]  

  • 44. β-Adrenoceptor blockade prevents carotid body hyperactivity and elevated vascular sympathetic nerve density induced by chronic intermittent hypoxia.
    Alzahrani AA; Cao LL; Aldossary HS; Nathanael D; Fu J; Ray CJ; Brain KL; Kumar P; Coney AM; Holmes AP
    Pflugers Arch; 2021 Jan; 473(1):37-51. PubMed ID: 33210151
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Chronic intermittent hypoxia induces local inflammation of the rat carotid body via functional upregulation of proinflammatory cytokine pathways.
    Lam SY; Liu Y; Ng KM; Lau CF; Liong EC; Tipoe GL; Fung ML
    Histochem Cell Biol; 2012 Mar; 137(3):303-17. PubMed ID: 22187044
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Regulation of hypoxia-inducible factor-α isoforms and redox state by carotid body neural activity in rats.
    Peng YJ; Yuan G; Khan S; Nanduri J; Makarenko VV; Reddy VD; Vasavda C; Kumar GK; Semenza GL; Prabhakar NR
    J Physiol; 2014 Sep; 592(17):3841-58. PubMed ID: 24973414
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cardiac Sympathetic Denervation Suppresses Atrial Fibrillation and Blood Pressure in a Chronic Intermittent Hypoxia Rat Model of Obstructive Sleep Apnea.
    Yang X; Zhang L; Liu H; Shao Y; Zhang S
    J Am Heart Assoc; 2019 Feb; 8(4):e010254. PubMed ID: 30757948
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Progesterone decreases apnoea and reduces oxidative stress induced by chronic intermittent hypoxia in ovariectomized female rats.
    Joseph V; Laouafa S; Marcouiller F; Roussel D; Pialoux V; Bairam A
    Exp Physiol; 2020 Jun; 105(6):1025-1034. PubMed ID: 32196792
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cardiorespiratory alterations induced by intermittent hypoxia in a rat model of sleep apnea.
    Iturriaga R; Moya EA; Del Rio R
    Adv Exp Med Biol; 2010; 669():271-4. PubMed ID: 20217364
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Expression and immunolocalization of endothelin peptides and its receptors, ETA and ETB, in the carotid body exposed to chronic intermittent hypoxia.
    Rey S; Corthorn J; Chacón C; Iturriaga R
    J Histochem Cytochem; 2007 Feb; 55(2):167-74. PubMed ID: 17046837
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [A study of the related pathways of oxidative stress in chronic intermittent hypoxia rats and the effect of N-acetylcysteine].
    Xiang YH; Su XL; Hu CP; Luo YQ; He RX
    Zhonghua Jie He He Hu Xi Za Zhi; 2010 Dec; 33(12):912-6. PubMed ID: 21211411
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The role of the Nox4-derived ROS-mediated RhoA/Rho kinase pathway in rat hypertension induced by chronic intermittent hypoxia.
    Lu W; Kang J; Hu K; Tang S; Zhou X; Xu L; Li Y; Yu S
    Sleep Breath; 2017 Sep; 21(3):667-677. PubMed ID: 28078487
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Different cyclical intermittent hypoxia severities have different effects on hippocampal microvasculature.
    Lim DC; Brady DC; Soans R; Kim EY; Valverde L; Keenan BT; Guo X; Kim WY; Park MJ; Galante R; Shackleford JA; Pack AI
    J Appl Physiol (1985); 2016 Jul; 121(1):78-88. PubMed ID: 27125850
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Adenosine Receptor Blockade by Caffeine Inhibits Carotid Sinus Nerve Chemosensory Activity in Chronic Intermittent Hypoxic Animals.
    Sacramento JF; Gonzalez C; Gonzalez-Martin MC; Conde SV
    Adv Exp Med Biol; 2015; 860():133-7. PubMed ID: 26303475
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Upregulation of a local renin-angiotensin system in the rat carotid body during chronic intermittent hypoxia.
    Lam SY; Liu Y; Ng KM; Liong EC; Tipoe GL; Leung PS; Fung ML
    Exp Physiol; 2014 Jan; 99(1):220-31. PubMed ID: 24036592
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Chronic intermittent hypoxia alters NMDA and AMPA-evoked currents in NTS neurons receiving carotid body chemoreceptor inputs.
    de Paula PM; Tolstykh G; Mifflin S
    Am J Physiol Regul Integr Comp Physiol; 2007 Jun; 292(6):R2259-65. PubMed ID: 17332161
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Heterozygous HIF-1alpha deficiency impairs carotid body-mediated systemic responses and reactive oxygen species generation in mice exposed to intermittent hypoxia.
    Peng YJ; Yuan G; Ramakrishnan D; Sharma SD; Bosch-Marce M; Kumar GK; Semenza GL; Prabhakar NR
    J Physiol; 2006 Dec; 577(Pt 2):705-16. PubMed ID: 16973705
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Exposure to cyclic intermittent hypoxia increases expression of functional NMDA receptors in the rat carotid body.
    Liu Y; Ji ES; Xiang S; Tamisier R; Tong J; Huang J; Weiss JW
    J Appl Physiol (1985); 2009 Jan; 106(1):259-67. PubMed ID: 18927268
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cell-Autonomous Autophagy Protects Against Chronic Intermittent Hypoxia Induced Sensory Nerves and Endothelial Dysfunction of the Soft Palate.
    Li C; Zhang Y; Chen Y; Su T; Zhao Y; Shi S
    Med Sci Monit; 2020 Jul; 26():e920878. PubMed ID: 32616707
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Age protects from harmful effects produced by chronic intermittent hypoxia.
    Quintero M; Olea E; Conde SV; Obeso A; Gallego-Martin T; Gonzalez C; Monserrat JM; Gómez-Niño A; Yubero S; Agapito T
    J Physiol; 2016 Mar; 594(6):1773-90. PubMed ID: 26752660
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.