These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 21822594)
1. Interactions between P-limitation and different C conditions on the fatty acid composition of an extremophile microalga. Spijkerman E; Wacker A Extremophiles; 2011 Sep; 15(5):597-609. PubMed ID: 21822594 [TBL] [Abstract][Full Text] [Related]
2. Phosphorus acquisition by Chlamydomonas acidophila under autotrophic and osmo-mixotrophic growth conditions. Spijkerman E J Exp Bot; 2007; 58(15-16):4195-202. PubMed ID: 18039735 [TBL] [Abstract][Full Text] [Related]
3. CO2 acquisition in Chlamydomonas acidophila is influenced mainly by CO2, not phosphorus, availability. Spijkerman E; Stojkovic S; Beardall J Photosynth Res; 2014 Sep; 121(2-3):213-21. PubMed ID: 24906887 [TBL] [Abstract][Full Text] [Related]
4. Independent colimitation for carbon dioxide and inorganic phosphorus. Spijkerman E; de Castro F; Gaedke U PLoS One; 2011; 6(12):e28219. PubMed ID: 22145031 [TBL] [Abstract][Full Text] [Related]
5. The expression of a carbon concentrating mechanism in Chlamydomonas acidophila under variable phosphorus, iron, and CO2 concentrations. Spijkerman E Photosynth Res; 2011 Sep; 109(1-3):179-89. PubMed ID: 21286811 [TBL] [Abstract][Full Text] [Related]
6. Decreased phosphorus incorporation explains the negative effect of high iron concentrations in the green microalga Chlamydomonas acidophila. Spijkerman E; Behrend H; Fach B; Gaedke U Sci Total Environ; 2018 Jun; 626():1342-1349. PubMed ID: 29898541 [TBL] [Abstract][Full Text] [Related]
7. Inorganic carbon limitation and mixotrophic growth in Chlamydomonas from an acidic mining lake. Tittel J; Bissinger V; Gaedke U; Kamjunke N Protist; 2005 Jun; 156(1):63-75. PubMed ID: 16048133 [TBL] [Abstract][Full Text] [Related]
8. Fatty acid patterns in Chlamydomonas sp. as a marker for nutritional regimes and temperature under extremely acidic conditions. Poerschmann J; Spijkerman E; Langer U Microb Ecol; 2004 Jul; 48(1):78-89. PubMed ID: 15107953 [TBL] [Abstract][Full Text] [Related]
9. What physiological acclimation supports increased growth at high CO2 conditions? Spijkerman E Physiol Plant; 2008 May; 133(1):41-8. PubMed ID: 18298410 [TBL] [Abstract][Full Text] [Related]
10. Fatty acid synthesis by Chlamydomonas reinhardtii in phosphorus limitation. Qari HA; Oves M J Bioenerg Biomembr; 2020 Feb; 52(1):27-38. PubMed ID: 31902060 [TBL] [Abstract][Full Text] [Related]
11. Productivity and selective accumulation of carotenoids of the novel extremophile microalga Chlamydomonas acidophila grown with different carbon sources in batch systems. Cuaresma M; Casal C; Forján E; Vílchez C J Ind Microbiol Biotechnol; 2011 Jan; 38(1):167-77. PubMed ID: 20811803 [TBL] [Abstract][Full Text] [Related]
12. Morphological and ultrastructural characterization of the acidophilic and lipid-producer strain Chlamydomonas acidophila LAFIC-004 (Chlorophyta) under different culture conditions. Souza LD; Simioni C; Bouzon ZL; Schneider RC; Gressler P; Miotto MC; Rossi MJ; Rörig LR Protoplasma; 2017 May; 254(3):1385-1398. PubMed ID: 27696020 [TBL] [Abstract][Full Text] [Related]
13. Variation of photoautotrophic fatty acid production from a highly CO2 tolerant alga, Chlorococcum littorale, with inorganic carbon over narrow ranges of pH. Ota M; Takenaka M; Sato Y; Smith RL; Inomata H Biotechnol Prog; 2015; 31(4):1053-7. PubMed ID: 25919350 [TBL] [Abstract][Full Text] [Related]
14. Metabolic, Physiological, and Transcriptomics Analysis of Batch Cultures of the Green Microalga Bogaert KA; Perez E; Rumin J; Giltay A; Carone M; Coosemans N; Radoux M; Eppe G; Levine RD; Remacle F; Remacle C Cells; 2019 Oct; 8(11):. PubMed ID: 31683711 [TBL] [Abstract][Full Text] [Related]
15. Ammonium removal from anaerobically treated effluent by Chlamydomonas acidophila. Escudero A; Blanco F; Lacalle A; Pinto M Bioresour Technol; 2014 Feb; 153():62-8. PubMed ID: 24342946 [TBL] [Abstract][Full Text] [Related]
16. Ecophysiological strategies for growth under varying light and organic carbon supply in two species of green microalgae differing in their motility. Spijkerman E; Lukas M; Wacker A Phytochemistry; 2017 Dec; 144():43-51. PubMed ID: 28881198 [TBL] [Abstract][Full Text] [Related]
17. Lack of isocitrate lyase in Chlamydomonas leads to changes in carbon metabolism and in the response to oxidative stress under mixotrophic growth. Plancke C; Vigeolas H; Höhner R; Roberty S; Emonds-Alt B; Larosa V; Willamme R; Duby F; Onga Dhali D; Thonart P; Hiligsmann S; Franck F; Eppe G; Cardol P; Hippler M; Remacle C Plant J; 2014 Feb; 77(3):404-17. PubMed ID: 24286363 [TBL] [Abstract][Full Text] [Related]
18. Fatty acid production from a highly CO2 tolerant alga, Chlorocuccum littorale, in the presence of inorganic carbon and nitrate. Ota M; Kato Y; Watanabe H; Watanabe M; Sato Y; Smith RL; Inomata H Bioresour Technol; 2009 Nov; 100(21):5237-42. PubMed ID: 19559600 [TBL] [Abstract][Full Text] [Related]
19. Optimization of triacylglycerol and starch production in Chlamydomonas debaryana NIES-2212 with regard to light intensity and CO2 concentration. Toyoshima M; Sato N Microbiology (Reading); 2018 Mar; 164(3):359-368. PubMed ID: 29458672 [TBL] [Abstract][Full Text] [Related]
20. Growth and lipid content at low temperature of Arctic alga Chlamydomonas sp. KNM0029C. Kim EJ; Jung W; Lim S; Kim S; Han SJ; Choi HG Bioprocess Biosyst Eng; 2016 Jan; 39(1):151-7. PubMed ID: 26541584 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]