BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 21822732)

  • 1. A deconvolution method to improve automated 3D-analysis of dendritic spines: application to a mouse model of Huntington's disease.
    Heck N; Betuing S; Vanhoutte P; Caboche J
    Brain Struct Funct; 2012 Apr; 217(2):421-34. PubMed ID: 21822732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct Visualisation of Abnormal Dendritic Spine Morphology in the Hippocampus of the R6/2 Transgenic Mouse Model of Huntington's Disease.
    Bulley SJ; Drew CJ; Morton AJ
    J Huntingtons Dis; 2012; 1(2):267-73. PubMed ID: 25063335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dendritic spine instability leads to progressive neocortical spine loss in a mouse model of Huntington's disease.
    Murmu RP; Li W; Holtmaat A; Li JY
    J Neurosci; 2013 Aug; 33(32):12997-3009. PubMed ID: 23926255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synaptic scaling up in medium spiny neurons of aged BACHD mice: A slow-progression model of Huntington's disease.
    Rocher AB; Gubellini P; Merienne N; Boussicault L; Petit F; Gipchtein P; Jan C; Hantraye P; Brouillet E; Bonvento G
    Neurobiol Dis; 2016 Feb; 86():131-9. PubMed ID: 26626081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dendritic spine pathology and deficits in experience-dependent dendritic plasticity in R6/1 Huntington's disease transgenic mice.
    Spires TL; Grote HE; Garry S; Cordery PM; Van Dellen A; Blakemore C; Hannan AJ
    Eur J Neurosci; 2004 May; 19(10):2799-807. PubMed ID: 15147313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altered sensory experience exacerbates stable dendritic spine and synapse loss in a mouse model of Huntington's disease.
    Murmu RP; Li W; Szepesi Z; Li JY
    J Neurosci; 2015 Jan; 35(1):287-98. PubMed ID: 25568121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated quantification of dendritic spine density and spine head diameter in medium spiny neurons of the nucleus accumbens.
    Shen H; Sesack SR; Toda S; Kalivas PW
    Brain Struct Funct; 2008 Sep; 213(1-2):149-57. PubMed ID: 18535839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated 3-D Detection of Dendritic Spines from In Vivo Two-Photon Image Stacks.
    Singh PK; Hernandez-Herrera P; Labate D; Papadakis M
    Neuroinformatics; 2017 Oct; 15(4):303-319. PubMed ID: 28710672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A neurocomputational method for fully automated 3D dendritic spine detection and segmentation of medium-sized spiny neurons.
    Zhang Y; Chen K; Baron M; Teylan MA; Kim Y; Song Z; Greengard P; Wong ST
    Neuroimage; 2010 May; 50(4):1472-84. PubMed ID: 20100579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of immersion oils and mounting media on the confocal imaging of dendritic spines.
    Peterson BM; Mermelstein PG; Meisel RL
    J Neurosci Methods; 2015 Mar; 242():106-11. PubMed ID: 25601477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling brain reserve: experience-dependent neuronal plasticity in healthy and Huntington's disease transgenic mice.
    Nithianantharajah J; Barkus C; Vijiaratnam N; Clement O; Hannan AJ
    Am J Geriatr Psychiatry; 2009 Mar; 17(3):196-209. PubMed ID: 19454847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic Dendritic Spine Quantification from Confocal Data with Neurolucida 360.
    Dickstein DL; Dickstein DR; Janssen WGM; Hof PR; Glaser JR; Rodriguez A; O'Connor N; Angstman P; Tappan SJ
    Curr Protoc Neurosci; 2016 Oct; 77():1.27.1-1.27.21. PubMed ID: 27696360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dysregulation of synaptic proteins, dendritic spine abnormalities and pathological plasticity of synapses as experience-dependent mediators of cognitive and psychiatric symptoms in Huntington's disease.
    Nithianantharajah J; Hannan AJ
    Neuroscience; 2013 Oct; 251():66-74. PubMed ID: 22633949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutant huntingtin and glycogen synthase kinase 3-beta accumulate in neuronal lipid rafts of a presymptomatic knock-in mouse model of Huntington's disease.
    Valencia A; Reeves PB; Sapp E; Li X; Alexander J; Kegel KB; Chase K; Aronin N; DiFiglia M
    J Neurosci Res; 2010 Jan; 88(1):179-90. PubMed ID: 19642201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methods for three-dimensional analysis of dendritic spine dynamics.
    Bertling E; Ludwig A; Koskinen M; Hotulainen P
    Methods Enzymol; 2012; 506():391-406. PubMed ID: 22341234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A surface-based 3-D dendritic spine detection approach from confocal microscopy images.
    Li Q; Deng Z
    IEEE Trans Image Process; 2012 Mar; 21(3):1223-30. PubMed ID: 21896386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated dendritic spine detection using convolutional neural networks on maximum intensity projected microscopic volumes.
    Xiao X; Djurisic M; Hoogi A; Sapp RW; Shatz CJ; Rubin DL
    J Neurosci Methods; 2018 Nov; 309():25-34. PubMed ID: 30130608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic dendritic spine analysis in two-photon laser scanning microscopy images.
    Bai W; Zhou X; Ji L; Cheng J; Wong ST
    Cytometry A; 2007 Oct; 71(10):818-26. PubMed ID: 17654649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-resolution imaging and evaluation of spines in organotypic hippocampal slice cultures.
    Sündermann F; Golovyashkina N; Tackenberg C; Brandt R; Bakota L
    Methods Mol Biol; 2012; 846():277-93. PubMed ID: 22367819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated analysis of spines from confocal laser microscopy images: application to the discrimination of androgen and estrogen effects on spinogenesis.
    Mukai H; Hatanaka Y; Mitsuhashi K; Hojo Y; Komatsuzaki Y; Sato R; Murakami G; Kimoto T; Kawato S
    Cereb Cortex; 2011 Dec; 21(12):2704-11. PubMed ID: 21527787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.