BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 21822879)

  • 1. The teratoma assay: an in vivo assessment of pluripotency.
    Wesselschmidt RL
    Methods Mol Biol; 2011; 767():231-41. PubMed ID: 21822879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation of human embryonic stem cell-derived teratomas for the assessment of pluripotency.
    Gertow K; Przyborski S; Loring JF; Auerbach JM; Epifano O; Otonkoski T; Damjanov I; Ahrlund-Richter L
    Curr Protoc Stem Cell Biol; 2007 Oct; Chapter 1():Unit1B.4. PubMed ID: 18785162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pluripotency of spermatogonial stem cells from adult mouse testis.
    Guan K; Nayernia K; Maier LS; Wagner S; Dressel R; Lee JH; Nolte J; Wolf F; Li M; Engel W; Hasenfuss G
    Nature; 2006 Apr; 440(7088):1199-203. PubMed ID: 16565704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional assays for human embryonic stem cell pluripotency.
    O'Connor MD; Kardel MD; Eaves CJ
    Methods Mol Biol; 2011; 690():67-80. PubMed ID: 21042985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Teratoma formation: a tool for monitoring pluripotency in stem cell research.
    Nelakanti RV; Kooreman NG; Wu JC
    Curr Protoc Stem Cell Biol; 2015 Feb; 32():4A.8.1-4A.8.17. PubMed ID: 25640819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Teratoma generation in the testis capsule.
    Peterson SE; Tran HT; Garitaonandia I; Han S; Nickey KS; Leonardo T; Laurent LC; Loring JF
    J Vis Exp; 2011 Nov; (57):e3177. PubMed ID: 22158256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Teratoma: from spontaneous tumors to the pluripotency/malignancy assay.
    Bulic-Jakus F; Katusic Bojanac A; Juric-Lekic G; Vlahovic M; Sincic N
    Wiley Interdiscip Rev Dev Biol; 2016; 5(2):186-209. PubMed ID: 26698368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and characterization of pluripotent human spermatogonial stem cell-derived cells.
    Kossack N; Meneses J; Shefi S; Nguyen HN; Chavez S; Nicholas C; Gromoll J; Turek PJ; Reijo-Pera RA
    Stem Cells; 2009 Jan; 27(1):138-49. PubMed ID: 18927477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Teratoma formation by human embryonic stem cells is site dependent and enhanced by the presence of Matrigel.
    Prokhorova TA; Harkness LM; Frandsen U; Ditzel N; Schrøder HD; Burns JS; Kassem M
    Stem Cells Dev; 2009; 18(1):47-54. PubMed ID: 18393673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo reprogrammed pluripotent stem cells from teratomas share analogous properties with their in vitro counterparts.
    Choi HW; Kim JS; Hong YJ; Song H; Seo HG; Do JT
    Sci Rep; 2015 Aug; 5():13559. PubMed ID: 26315499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of pluripotent embryonic-like stem cells residing in adult tissues in regeneration and longevity.
    Ratajczak MZ; Liu R; Ratajczak J; Kucia M; Shin DM
    Differentiation; 2011 Mar; 81(3):153-61. PubMed ID: 21339038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Testicular teratomas: an intersection of pluripotency, differentiation and cancer biology.
    Bustamante-Marín X; Garness JA; Capel B
    Int J Dev Biol; 2013; 57(2-4):201-10. PubMed ID: 23784831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Teratoma formation by human embryonic stem cells: evaluation of essential parameters for future safety studies.
    Hentze H; Soong PL; Wang ST; Phillips BW; Putti TC; Dunn NR
    Stem Cell Res; 2009 May; 2(3):198-210. PubMed ID: 19393593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Teratoma formation in immunocompetent mice after syngeneic and allogeneic implantation of germline capable mouse embryonic stem cells.
    Aldahmash A; Atteya M; Elsafadi M; Al-Nbaheen M; Al-Mubarak HA; Vishnubalaji R; Al-Roalle A; Al-Harbi S; Manikandan M; Matthaei KI; Mahmood A
    Asian Pac J Cancer Prev; 2013; 14(10):5705-11. PubMed ID: 24289566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polycistronic lentiviral vector for "hit and run" reprogramming of adult skin fibroblasts to induced pluripotent stem cells.
    Chang CW; Lai YS; Pawlik KM; Liu K; Sun CW; Li C; Schoeb TR; Townes TM
    Stem Cells; 2009 May; 27(5):1042-9. PubMed ID: 19415770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation and characterization of human induced pluripotent stem cells.
    Ohnuki M; Takahashi K; Yamanaka S
    Curr Protoc Stem Cell Biol; 2009 Jun; Chapter 4():Unit 4A.2. PubMed ID: 19536759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro neural differentiation of human embryonic stem cells using a low-density mouse embryonic fibroblast feeder protocol.
    Ozolek JA; Jane EP; Esplen JE; Petrosko P; Wehn AK; Erb TM; Mucko SE; Cote LC; Sammak PJ
    Methods Mol Biol; 2010; 584():71-95. PubMed ID: 19907972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inadvertent presence of pluripotent cells in monolayers derived from differentiated embryoid bodies.
    Ramírez MA; Pericuesta E; Fernández-González R; Pintado B; Gutiérrez-Adán A
    Int J Dev Biol; 2007; 51(5):397-407. PubMed ID: 17616929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Derivation of human embryonic germ cells: an alternative source of pluripotent stem cells.
    Turnpenny L; Brickwood S; Spalluto CM; Piper K; Cameron IT; Wilson DI; Hanley NA
    Stem Cells; 2003; 21(5):598-609. PubMed ID: 12968114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induction of pluripotency in human cord blood unrestricted somatic stem cells.
    Zaehres H; Kögler G; Arauzo-Bravo MJ; Bleidissel M; Santourlidis S; Weinhold S; Greber B; Kim JB; Buchheiser A; Liedtke S; Eilken HM; Graffmann N; Zhao X; Meyer J; Reinhardt P; Burr B; Waclawczyk S; Ortmeier C; Uhrberg M; Schöler HR; Cantz T; Wernet P
    Exp Hematol; 2010 Sep; 38(9):809-18, 818.e1-2. PubMed ID: 20541586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.