These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
506 related articles for article (PubMed ID: 21822884)
1. Quantitative proteome and phosphoproteome analysis of human pluripotent stem cells. Muñoz J; Heck AJ Methods Mol Biol; 2011; 767():297-312. PubMed ID: 21822884 [TBL] [Abstract][Full Text] [Related]
2. Investigating the role of FGF-2 in stem cell maintenance by global phosphoproteomics profiling. Zoumaro-Djayoon AD; Ding V; Foong LY; Choo A; Heck AJ; Muñoz J Proteomics; 2011 Oct; 11(20):3962-71. PubMed ID: 21761559 [TBL] [Abstract][Full Text] [Related]
3. Analytical strategies in mass spectrometry-based phosphoproteomics. Rosenqvist H; Ye J; Jensen ON Methods Mol Biol; 2011; 753():183-213. PubMed ID: 21604124 [TBL] [Abstract][Full Text] [Related]
4. Highly robust, automated, and sensitive online TiO2-based phosphoproteomics applied to study endogenous phosphorylation in Drosophila melanogaster. Pinkse MW; Mohammed S; Gouw JW; van Breukelen B; Vos HR; Heck AJ J Proteome Res; 2008 Feb; 7(2):687-97. PubMed ID: 18034456 [TBL] [Abstract][Full Text] [Related]
5. Exploring the human leukocyte phosphoproteome using a microfluidic reversed-phase-TiO2-reversed-phase high-performance liquid chromatography phosphochip coupled to a quadrupole time-of-flight mass spectrometer. Raijmakers R; Kraiczek K; de Jong AP; Mohammed S; Heck AJ Anal Chem; 2010 Feb; 82(3):824-32. PubMed ID: 20058876 [TBL] [Abstract][Full Text] [Related]
6. Identification and quantitation of signal molecule-dependent protein phosphorylation. Groen A; Thomas L; Lilley K; Marondedze C Methods Mol Biol; 2013; 1016():121-37. PubMed ID: 23681576 [TBL] [Abstract][Full Text] [Related]
7. Quantitative phosphoproteomics of transforming growth factor-β signaling in colon cancer cells. Ali NA; Molloy MP Proteomics; 2011 Aug; 11(16):3390-401. PubMed ID: 21751366 [TBL] [Abstract][Full Text] [Related]
8. Phosphorylation dynamics during early differentiation of human embryonic stem cells. Van Hoof D; Muñoz J; Braam SR; Pinkse MW; Linding R; Heck AJ; Mummery CL; Krijgsveld J Cell Stem Cell; 2009 Aug; 5(2):214-26. PubMed ID: 19664995 [TBL] [Abstract][Full Text] [Related]
9. Increasing phosphoproteome coverage and identification of phosphorylation motifs through combination of different HPLC fractionation methods. Chen X; Wu D; Zhao Y; Wong BH; Guo L J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Jan; 879(1):25-34. PubMed ID: 21130716 [TBL] [Abstract][Full Text] [Related]
10. Global analysis of protein phosphorylation networks in insulin signaling by sequential enrichment of phosphoproteins and phosphopeptides. Fedjaev M; Parmar A; Xu Y; Vyetrogon K; Difalco MR; Ashmarina M; Nifant'ev I; Posner BI; Pshezhetsky AV Mol Biosyst; 2012 Apr; 8(5):1461-71. PubMed ID: 22362066 [TBL] [Abstract][Full Text] [Related]
11. Phosphoproteome analysis of rat L6 myotubes using reversed-phase C18 prefractionation and titanium dioxide enrichment. Hou J; Cui Z; Xie Z; Xue P; Wu P; Chen X; Li J; Cai T; Yang F J Proteome Res; 2010 Feb; 9(2):777-88. PubMed ID: 20028136 [TBL] [Abstract][Full Text] [Related]
12. Comparison of stable-isotope labeling with amino acids in cell culture and spectral counting for relative quantification of protein expression. Collier TS; Randall SM; Sarkar P; Rao BM; Dean RA; Muddiman DC Rapid Commun Mass Spectrom; 2011 Sep; 25(17):2524-32. PubMed ID: 21818813 [TBL] [Abstract][Full Text] [Related]
13. Online automated in vivo zebrafish phosphoproteomics: from large-scale analysis down to a single embryo. Lemeer S; Pinkse MW; Mohammed S; van Breukelen B; den Hertog J; Slijper M; Heck AJ J Proteome Res; 2008 Apr; 7(4):1555-64. PubMed ID: 18307296 [TBL] [Abstract][Full Text] [Related]
15. Integrating titania enrichment, iTRAQ labeling, and Orbitrap CID-HCD for global identification and quantitative analysis of phosphopeptides. Wu J; Warren P; Shakey Q; Sousa E; Hill A; Ryan TE; He T Proteomics; 2010 Jun; 10(11):2224-34. PubMed ID: 20340162 [TBL] [Abstract][Full Text] [Related]
16. Analysis of the subcellular phosphoproteome using a novel phosphoproteomic reactor. Zhou H; Elisma F; Denis NJ; Wright TG; Tian R; Zhou H; Hou W; Zou H; Figeys D J Proteome Res; 2010 Mar; 9(3):1279-88. PubMed ID: 20067319 [TBL] [Abstract][Full Text] [Related]
17. Phosphoproteome analysis of HeLa cells using stable isotope labeling with amino acids in cell culture (SILAC). Amanchy R; Kalume DE; Iwahori A; Zhong J; Pandey A J Proteome Res; 2005; 4(5):1661-71. PubMed ID: 16212419 [TBL] [Abstract][Full Text] [Related]
18. Combining Metabolic ¹⁵N Labeling with Improved Tandem MOAC for Enhanced Probing of the Phosphoproteome. Thomas M; Huck N; Hoehenwarter W; Conrath U; Beckers GJ Methods Mol Biol; 2015; 1306():81-96. PubMed ID: 25930695 [TBL] [Abstract][Full Text] [Related]
20. High accuracy mass spectrometry in large-scale analysis of protein phosphorylation. Olsen JV; Macek B Methods Mol Biol; 2009; 492():131-42. PubMed ID: 19241030 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]