These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 21822902)
1. Kinetics of CO conversion into H2 by Carboxydothermus hydrogenoformans. Zhao Y; Cimpoia R; Liu Z; Guiot SR Appl Microbiol Biotechnol; 2011 Sep; 91(6):1677-84. PubMed ID: 21822902 [TBL] [Abstract][Full Text] [Related]
2. Effect of initial bacteria concentration on hydrogen gas production from cheese whey powder solution by thermophilic dark fermentation. Kargi F; Eren NS; Ozmihci S Biotechnol Prog; 2012 Jul; 28(4):931-6. PubMed ID: 22581615 [TBL] [Abstract][Full Text] [Related]
3. Carbon monoxide conversion by thermophilic sulfate-reducing bacteria in pure culture and in co-culture with Carboxydothermus hydrogenoformans. Parshina SN; Kijlstra S; Henstra AM; Sipma J; Plugge CM; Stams AJ Appl Microbiol Biotechnol; 2005 Aug; 68(3):390-6. PubMed ID: 16133342 [TBL] [Abstract][Full Text] [Related]
4. Potential of wastewater-treating anaerobic granules for biomethanation of synthesis gas. Guiot SR; Cimpoia R; Carayon G Environ Sci Technol; 2011 Mar; 45(5):2006-12. PubMed ID: 21291242 [TBL] [Abstract][Full Text] [Related]
5. H2 enrichment from synthesis gas by Desulfotomaculum carboxydivorans for potential applications in synthesis gas purification and biodesulfurization. Sipma J; Osuna MB; Parshina SN; Lettinga G; Stams AJ; Lens PN Appl Microbiol Biotechnol; 2007 Aug; 76(2):339-47. PubMed ID: 17583809 [TBL] [Abstract][Full Text] [Related]
6. Insight into Energy Conservation via Alternative Carbon Monoxide Metabolism in Carboxydothermus pertinax Revealed by Comparative Genome Analysis. Fukuyama Y; Omae K; Yoneda Y; Yoshida T; Sako Y Appl Environ Microbiol; 2018 Jul; 84(14):. PubMed ID: 29728389 [No Abstract] [Full Text] [Related]
7. Fermentative hydrogen production and bacterial community structure in high-rate anaerobic bioreactors containing silicone-immobilized and self-flocculated sludge. Wu SY; Hung CH; Lin CN; Chen HW; Lee AS; Chang JS Biotechnol Bioeng; 2006 Apr; 93(5):934-46. PubMed ID: 16329152 [TBL] [Abstract][Full Text] [Related]
8. Biohydrogen production from xylose at extreme thermophilic temperatures (70 degrees C) by mixed culture fermentation. Kongjan P; Min B; Angelidaki I Water Res; 2009 Mar; 43(5):1414-24. PubMed ID: 19147170 [TBL] [Abstract][Full Text] [Related]
9. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
10. Effect of carbon monoxide, hydrogen and sulfate on thermophilic (55 degrees C) hydrogenogenic carbon monoxide conversion in two anaerobic bioreactor sludges. Sipma J; Meulepas RJ; Parshina SN; Stams AJ; Lettinga G; Lens PN Appl Microbiol Biotechnol; 2004 Apr; 64(3):421-8. PubMed ID: 14556037 [TBL] [Abstract][Full Text] [Related]
11. Effect of hydraulic retention time on sulfate reduction in a carbon monoxide fed thermophilic gas lift reactor. Sipma J; Osuna MB; Lettinga G; Stams AJ; Lens PN Water Res; 2007 May; 41(9):1995-2003. PubMed ID: 17336364 [TBL] [Abstract][Full Text] [Related]
12. Kinetic study of pH effects on biological hydrogen production by a mixed culture. Jun YS; Yu SH; Ryu KG; Lee TJ J Microbiol Biotechnol; 2008 Jun; 18(6):1130-5. PubMed ID: 18600058 [TBL] [Abstract][Full Text] [Related]
13. 'That which does not kill us only makes us stronger': the role of carbon monoxide in thermophilic microbial consortia. Techtmann SM; Colman AS; Robb FT Environ Microbiol; 2009 May; 11(5):1027-37. PubMed ID: 19239487 [TBL] [Abstract][Full Text] [Related]
14. Hydrogenogenic CO conversion in a moderately thermophilic (55 degrees C) sulfate-fed gas lift reactor: competition for CO-derived H(2). Sipma J; Lettinga G; Stams AJ; Lens PN Biotechnol Prog; 2006; 22(5):1327-34. PubMed ID: 17022671 [TBL] [Abstract][Full Text] [Related]
15. One-carbon substrate-based biohydrogen production: microbes, mechanism, and productivity. Rittmann SKR; Lee HS; Lim JK; Kim TW; Lee JH; Kang SG Biotechnol Adv; 2015; 33(1):165-177. PubMed ID: 25461503 [TBL] [Abstract][Full Text] [Related]
16. Utilization of CO2 and biomass char derived from pyrolysis of Dunaliella salina: the effects of steam and catalyst on CO and H2 gas production. Yang C; Jia L; Su S; Tian Z; Song Q; Fang W; Chen C; Liu G Bioresour Technol; 2012 Apr; 110():676-81. PubMed ID: 22336747 [TBL] [Abstract][Full Text] [Related]
17. Anaerobic hydrogen production with an efficient carrier-induced granular sludge bed bioreactor. Lee KS; Wu JF; Lo YS; Lo YC; Lin PJ; Chang JS Biotechnol Bioeng; 2004 Sep; 87(5):648-57. PubMed ID: 15352063 [TBL] [Abstract][Full Text] [Related]
18. A kinetic approach to anaerobic hydrogen-producing process. Mu Y; Yu HQ; Wang G Water Res; 2007 Mar; 41(5):1152-60. PubMed ID: 17267006 [TBL] [Abstract][Full Text] [Related]