BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 21822917)

  • 1. Immunotherapy with MVA-BN®-HER2 induces HER-2-specific Th1 immunity and alters the intratumoral balance of effector and regulatory T cells.
    Mandl SJ; Rountree RB; Dalpozzo K; Do L; Lombardo JR; Schoonmaker PL; Dirmeier U; Steigerwald R; Giffon T; Laus R; Delcayre A
    Cancer Immunol Immunother; 2012 Jan; 61(1):19-29. PubMed ID: 21822917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poxvirus-based active immunotherapy synergizes with CTLA-4 blockade to increase survival in a murine tumor model by improving the magnitude and quality of cytotoxic T cells.
    Foy SP; Mandl SJ; dela Cruz T; Cote JJ; Gordon EJ; Trent E; Delcayre A; Breitmeyer J; Franzusoff A; Rountree RB
    Cancer Immunol Immunother; 2016 May; 65(5):537-49. PubMed ID: 26961085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversing tumor immune suppression with intratumoral IL-12: activation of tumor-associated T effector/memory cells, induction of T suppressor apoptosis, and infiltration of CD8+ T effectors.
    Kilinc MO; Aulakh KS; Nair RE; Jones SA; Alard P; Kosiewicz MM; Egilmez NK
    J Immunol; 2006 Nov; 177(10):6962-73. PubMed ID: 17082611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exosome targeting of tumor antigens expressed by cancer vaccines can improve antigen immunogenicity and therapeutic efficacy.
    Rountree RB; Mandl SJ; Nachtwey JM; Dalpozzo K; Do L; Lombardo JR; Schoonmaker PL; Brinkmann K; Dirmeier U; Laus R; Delcayre A
    Cancer Res; 2011 Aug; 71(15):5235-44. PubMed ID: 21670078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a cancer vaccine: peptides, proteins, and DNA.
    Shiku H; Wang L; Ikuta Y; Okugawa T; Schmitt M; Gu X; Akiyoshi K; Sunamoto J; Nakamura H
    Cancer Chemother Pharmacol; 2000; 46 Suppl():S77-82. PubMed ID: 10950153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppression of antitumor immunity by IL-10 and TGF-beta-producing T cells infiltrating the growing tumor: influence of tumor environment on the induction of CD4+ and CD8+ regulatory T cells.
    Jarnicki AG; Lysaght J; Todryk S; Mills KH
    J Immunol; 2006 Jul; 177(2):896-904. PubMed ID: 16818744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CD4+/CD25+ regulatory cells inhibit activation of tumor-primed CD4+ T cells with IFN-gamma-dependent antiangiogenic activity, as well as long-lasting tumor immunity elicited by peptide vaccination.
    Casares N; Arribillaga L; Sarobe P; Dotor J; Lopez-Diaz de Cerio A; Melero I; Prieto J; Borrás-Cuesta F; Lasarte JJ
    J Immunol; 2003 Dec; 171(11):5931-9. PubMed ID: 14634104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peptide vaccination breaks tolerance to HER-2/neu by generating vaccine-specific FasL(+) CD4(+) T cells: first evidence for intratumor apoptotic regulatory T cells.
    Gritzapis AD; Voutsas IF; Lekka E; Papamichail M; Baxevanis CN
    Cancer Res; 2010 Apr; 70(7):2686-96. PubMed ID: 20233867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting of the non-mutated tumor antigen HER2/neu to mature dendritic cells induces an integrated immune response that protects against breast cancer in mice.
    Wang B; Zaidi N; He LZ; Zhang L; Kuroiwa JM; Keler T; Steinman RM
    Breast Cancer Res; 2012 Mar; 14(2):R39. PubMed ID: 22397502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HSP110-HER2/neu chaperone complex vaccine induces protective immunity against spontaneous mammary tumors in HER-2/neu transgenic mice.
    Manjili MH; Wang XY; Chen X; Martin T; Repasky EA; Henderson R; Subjeck JR
    J Immunol; 2003 Oct; 171(8):4054-61. PubMed ID: 14530326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting CCR8 Induces Protective Antitumor Immunity and Enhances Vaccine-Induced Responses in Colon Cancer.
    Villarreal DO; L'Huillier A; Armington S; Mottershead C; Filippova EV; Coder BD; Petit RG; Princiotta MF
    Cancer Res; 2018 Sep; 78(18):5340-5348. PubMed ID: 30026324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma.
    Liyanage UK; Moore TT; Joo HG; Tanaka Y; Herrmann V; Doherty G; Drebin JA; Strasberg SM; Eberlein TJ; Goedegebuure PS; Linehan DC
    J Immunol; 2002 Sep; 169(5):2756-61. PubMed ID: 12193750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Depletion of CD4+CD25+ regulatory T cells promotes a tumor-specific immune response in pancreas cancer-bearing mice.
    Viehl CT; Moore TT; Liyanage UK; Frey DM; Ehlers JP; Eberlein TJ; Goedegebuure PS; Linehan DC
    Ann Surg Oncol; 2006 Sep; 13(9):1252-8. PubMed ID: 16952047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anti-HER2 CD4(+) T-helper type 1 response is a novel immune correlate to pathologic response following neoadjuvant therapy in HER2-positive breast cancer.
    Datta J; Berk E; Xu S; Fitzpatrick E; Rosemblit C; Lowenfeld L; Goodman N; Lewis DA; Zhang PJ; Fisher C; Roses RE; DeMichele A; Czerniecki BJ
    Breast Cancer Res; 2015 May; 17(1):71. PubMed ID: 25997452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Depletion of CD4(+)CD25(high) regulatory T cells from tumor infiltrating lymphocytes predominantly induces Th1 type immune response in vivo which inhibits tumor growth in adoptive immunotherapy.
    Xu L; Xu W; Jiang Z; Zhang F; Chu Y; Xiong S
    Cancer Biol Ther; 2009 Jan; 8(1):66-72. PubMed ID: 19029829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Treatment of advanced tumors with agonistic anti-GITR mAb and its effects on tumor-infiltrating Foxp3+CD25+CD4+ regulatory T cells.
    Ko K; Yamazaki S; Nakamura K; Nishioka T; Hirota K; Yamaguchi T; Shimizu J; Nomura T; Chiba T; Sakaguchi S
    J Exp Med; 2005 Oct; 202(7):885-91. PubMed ID: 16186187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intravenous injection of MVA virus targets CD8+ lymphocytes to tumors to control tumor growth upon combinatorial treatment with a TLR9 agonist.
    Fend L; Gatard-Scheikl T; Kintz J; Gantzer M; Schaedler E; Rittner K; Cochin S; Fournel S; Préville X
    Cancer Immunol Res; 2014 Dec; 2(12):1163-74. PubMed ID: 25168392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Therapy of Established Tumors with Rationally Designed Multiple Agents Targeting Diverse Immune-Tumor Interactions: Engage, Expand, Enable.
    Fabian KP; Malamas AS; Padget MR; Solocinski K; Wolfson B; Fujii R; Abdul Sater H; Schlom J; Hodge JW
    Cancer Immunol Res; 2021 Feb; 9(2):239-252. PubMed ID: 33355290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of multiepitope cancer vaccines based on large combinatorial libraries of survivin-derived mutant epitopes.
    Domínguez-Romero AN; Martínez-Cortés F; Munguía ME; Odales J; Gevorkian G; Manoutcharian K
    Immunology; 2020 Oct; 161(2):123-138. PubMed ID: 32619293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CD19-targeting fusion protein combined with PD1 antibody enhances anti-tumor immunity in mouse models.
    Lv Z; Zhang P; Li D; Qin M; Nie L; Wang X; Ai L; Feng Z; Odhiambo WO; Ma Y; Ji Y
    Oncoimmunology; 2020; 9(1):1747688. PubMed ID: 32363119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.