These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 21823162)

  • 21. [Phosphate sorption characteristics onto sediments in the middle and lower reaches of the Yellow River].
    Wang XL; Pan G; Bao HY; Zhang XW; Chen H; Guo BS
    Huan Jing Ke Xue; 2008 Aug; 29(8):2137-42. PubMed ID: 18839562
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sorption of alkylphenols on Ebro River sediments: comparing isotherms with field observations in river water and sediments.
    Navarro A; Endo S; Gocht T; Barth JA; Lacorte S; Barceló D; Grathwohl P
    Environ Pollut; 2009 Feb; 157(2):698-703. PubMed ID: 18824283
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sorption of phenanthrene by nonhydrolyzable organic matter from different size sediments.
    Sun K; Ran Y; Yang Y; Xing B
    Environ Sci Technol; 2008 Mar; 42(6):1961-6. PubMed ID: 18409621
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predicting distribution coefficients for antibiotics in a river water-sediment using quantitative models based on their spatiotemporal variations.
    Tang J; Wang S; Fan J; Long S; Wang L; Tang C; Tam NF; Yang Y
    Sci Total Environ; 2019 Mar; 655():1301-1310. PubMed ID: 30577122
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Effect of surfactant on sorption behaviors of DDT on Jiaozhou Bay sediment].
    Cao XY; Jing JN; Yang GP; Gong XF
    Huan Jing Ke Xue; 2011 Nov; 32(11):3327-34. PubMed ID: 22295631
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sorption of a branched nonylphenol and perfluorooctanoic acid on Yangtze River sediments and their model components.
    Li C; Ji R; Schäffer A; Sequaris JM; Amelung W; Vereecken H; Klumpp E
    J Environ Monit; 2012 Oct; 14(10):2653-8. PubMed ID: 22892466
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phosphorus sorption and fraction characteristics in the upper, middle and low reach sediments of the Daliao river systems, China.
    Lin C; Wang Z; He M; Li Y; Liu R; Yang Z
    J Hazard Mater; 2009 Oct; 170(1):278-85. PubMed ID: 19477067
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sorption and desorption of 17α-ethinylestradiol onto sediments affected by rhamnolipidic biosurfactants.
    Guo YP; Hu YY; Lin H; Ou XL
    J Hazard Mater; 2018 Feb; 344():707-715. PubMed ID: 29154096
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adsorption behavior of bisphenol A on sediments in Xiangjiang River, Central-south China.
    Zeng G; Zhang C; Huang G; Yu J; Wang Q; Li J; Xi B; Liu H
    Chemosphere; 2006 Nov; 65(9):1490-9. PubMed ID: 16737729
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The distribution and partitioning of common antibiotics in water and sediment of the Pearl River Estuary, South China.
    Liang X; Chen B; Nie X; Shi Z; Huang X; Li X
    Chemosphere; 2013 Sep; 92(11):1410-6. PubMed ID: 23628172
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of competing inorganic cations on the ion exchange equilibrium of the monovalent organic cation metoprolol on natural sediment.
    Niedbala A; Schaffer M; Licha T; Nödler K; Börnick H; Ruppert H; Worch E
    Chemosphere; 2013 Feb; 90(6):1945-51. PubMed ID: 23159068
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sorption of perfluorooctane sulfonate to carbon nanotubes in aquatic sediments.
    Kwadijk CJ; Velzeboer I; Koelmans AA
    Chemosphere; 2013 Feb; 90(5):1631-6. PubMed ID: 23041036
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Irreversible sorption of phthalate acid esters to river sediments].
    Xia XH; Zhang J; Sha YJ
    Huan Jing Ke Xue; 2010 Apr; 31(4):969-75. PubMed ID: 20527178
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of natural organic matter on the microporous sorption sites of black carbon in a Yangtze River sediment.
    Zhang J; Séquaris JM; Klumpp E
    Environ Sci Pollut Res Int; 2013 Oct; 20(10):6992-8. PubMed ID: 23589276
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spatio-temporal evaluation of emerging contaminants and their partitioning along a Brazilian watershed.
    de Sousa DNR; Mozeto AA; Carneiro RL; Fadini PS
    Environ Sci Pollut Res Int; 2018 Feb; 25(5):4607-4620. PubMed ID: 29192401
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Studies on the sorption behaviors of phenanthrene on marine sediments.
    Yang GP; Zheng X
    Environ Toxicol Chem; 2010 Oct; 29(10):2169-76. PubMed ID: 20872678
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of dissolved organic carbon in the cosorption of copper and phthalate esters onto Yellow River sediments.
    Xu N; Ni J; Sun W; Borthwick AG
    Chemosphere; 2007 Nov; 69(9):1419-27. PubMed ID: 17560627
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sorption and degradation of selected organic UV filters (BM-DBM, 4-MBC, and OD-PABA) in laboratory water-sediment systems.
    Li S; Lu G; Xie Z; Ding J; Liu J; Li Y
    Environ Sci Pollut Res Int; 2016 May; 23(10):9679-89. PubMed ID: 26846244
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impacts of compound properties and sediment characteristics on the sorption behaviour of pharmaceuticals in aquatic systems.
    Al-Khazrajy OSA; Boxall ABA
    J Hazard Mater; 2016 Nov; 317():198-209. PubMed ID: 27270139
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Accumulation and Risk of Triclosan in Surface Sediments Near the Outfalls of Municipal Wastewater Treatment Plants.
    Chen L; Wang Z; Jing Z; Wang Z; Cao S; Yu T
    Bull Environ Contam Toxicol; 2015 Oct; 95(4):525-9. PubMed ID: 26271613
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.