BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 21823236)

  • 1. In vivo biocompatibility of three potential intraperitoneal implants.
    Defrère S; Mestagdt M; Riva R; Krier F; Van Langendonckt A; Drion P; Jérôme C; Evrard B; Dehoux JP; Foidart JM; Donnez J
    Macromol Biosci; 2011 Oct; 11(10):1336-45. PubMed ID: 21823236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical and biological evaluations of beta-tricalcium phosphate/silicone rubber composite as a novel soft-tissue implant.
    Zhang YM; Wang SL; Lei ZY; Fan DL
    Aesthetic Plast Surg; 2009 Sep; 33(5):760-9. PubMed ID: 19452200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ex ova chick chorioallantoic membrane as a novel model for evaluation of tissue responses to biomaterials and implants.
    Klueh U; Dorsky DI; Moussy F; Kreutzer DL
    J Biomed Mater Res A; 2003 Dec; 67(3):838-43. PubMed ID: 14613232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Estimation of biocompatibility of fibers with large mechanical resistance].
    Zywicka B
    Polim Med; 2004; 34(3):3-48. PubMed ID: 15631154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Delayed in vitro immune response to long-term intraperitoneal polymer implant in mice.
    Maurin N; Guernier C; Daty N
    J Biomed Mater Res; 1995 Dec; 29(12):1493-8. PubMed ID: 8600139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chitosan implants in the rat spinal cord: biocompatibility and biodegradation.
    Kim H; Tator CH; Shoichet MS
    J Biomed Mater Res A; 2011 Jun; 97(4):395-404. PubMed ID: 21465644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative analysis of early in vivo tissue response to synthetic apatite implants.
    Ellies LG; Carter JM; Natiella JR; Featherstone JD; Nelson DG
    J Biomed Mater Res; 1988 Feb; 22(2):137-48. PubMed ID: 3356712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The inflammatory potential of dental Hydron: a literature review and pilot investigation in rats' connective tissue.
    Yesilsoy C; Morse DR
    Ann Dent; 1985; 44(1):21-6. PubMed ID: 3863537
    [No Abstract]   [Full Text] [Related]  

  • 9. Poly(dimethyl siloxane) surface modification by low pressure plasma to improve its characteristics towards biomedical applications.
    Pinto S; Alves P; Matos CM; Santos AC; Rodrigues LR; Teixeira JA; Gil MH
    Colloids Surf B Biointerfaces; 2010 Nov; 81(1):20-6. PubMed ID: 20638249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the biocompatibility of a coating material for an implantable bladder volume sensor.
    Kim SJ; Lee DS; Kim IG; Sohn DW; Park JY; Choi BK; Kim SW
    Kaohsiung J Med Sci; 2012 Mar; 28(3):123-9. PubMed ID: 22385604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a new system for evaluating the biocompatibility of implant materials using an osteogenic cell line (MC3T3-E1).
    Itakura Y; Kosugi A; Sudo H; Yamamoto S; Kumegawa M
    J Biomed Mater Res; 1988 Jul; 22(7):613-22. PubMed ID: 3165381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly(anhydride) administration in high doses in vivo: studies of biocompatibility and toxicology.
    Laurencin C; Domb A; Morris C; Brown V; Chasin M; McConnell R; Lange N; Langer R
    J Biomed Mater Res; 1990 Nov; 24(11):1463-81. PubMed ID: 2279981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. T lymphocyte modification with the UTA microporous polyurethane vascular prosthesis: in vivo studies in rats.
    Marois Y; Roy R; Marois M; Guidoin RG; von Maltzahn WW; Kowligi R; Eberhart RC
    Clin Invest Med; 1992 Apr; 15(2):141-9. PubMed ID: 1591896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo evaluation of a novel electrically conductive polypyrrole/poly(D,L-lactide) composite and polypyrrole-coated poly(D,L-lactide-co-glycolide) membranes.
    Wang Z; Roberge C; Dao LH; Wan Y; Shi G; Rouabhia M; Guidoin R; Zhang Z
    J Biomed Mater Res A; 2004 Jul; 70(1):28-38. PubMed ID: 15174106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fibrin as a matrix for grafting 2-hydroxyethyl methacrylate: preparation and characterization of the graft and its in vivo evaluation for wound healing.
    Sathian J; Sastry TP; Suguna L; Lakshminarayana Y; Radhakrishnan G
    J Biomed Mater Res A; 2003 Jun; 65(4):435-40. PubMed ID: 12761832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Experimental study of novel injectable nucleus pulposus prostheses implant].
    Cheng X; Zou D; Wu J; Ma H; Tuo X; Wang X; Kan G
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2009 Jun; 23(6):670-6. PubMed ID: 19594012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mast cells and tissue reaction to intraperitoneally implanted polymer capsules.
    Christenson L; Wahlberg L; Aebischer P
    J Biomed Mater Res; 1991 Sep; 25(9):1119-31. PubMed ID: 1778997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biocompatibility of polymeric delivery systems for macromolecules.
    Langer R; Brem H; Tapper D
    J Biomed Mater Res; 1981 Mar; 15(2):267-77. PubMed ID: 7348718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo selection of biocompatible alginates for islet encapsulation and subcutaneous transplantation.
    Vériter S; Mergen J; Goebbels RM; Aouassar N; Grégoire C; Jordan B; Levêque P; Gallez B; Gianello P; Dufrane D
    Tissue Eng Part A; 2010 May; 16(5):1503-13. PubMed ID: 20001535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocompatibility testing for medical implant materials: the activities of F04.16 on biocompatibility test methods.
    St John KR
    Stand News; 1994 Mar; 22(3):46-9. PubMed ID: 10172771
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.