These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

694 related articles for article (PubMed ID: 21823703)

  • 1. Relativistic contributions to single and double core electron ionization energies of noble gases.
    Niskanen J; Norman P; Aksela H; Agren H
    J Chem Phys; 2011 Aug; 135(5):054310. PubMed ID: 21823703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. QED effects in 1s and 2s single and double ionization potentials of the noble gases.
    Niskanen J; Jänkälä K; Huttula M; Föhlisch A
    J Chem Phys; 2017 Apr; 146(14):144312. PubMed ID: 28411594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate relativistic energy-consistent pseudopotentials for the superheavy elements 111 to 118 including quantum electrodynamic effects.
    Hangele T; Dolg M; Hanrath M; Cao X; Schwerdtfeger P
    J Chem Phys; 2012 Jun; 136(21):214105. PubMed ID: 22697528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic structure of three-dimensional isotropic quantum dots by four-component relativistic coupled cluster methods.
    Yakobi H; Eliav E; Kaldor U
    J Chem Phys; 2011 Feb; 134(5):054503. PubMed ID: 21303134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relativistic energy-consistent pseudopotentials for superheavy elements 119 and 120 including quantum electrodynamic effects.
    Hangele T; Dolg M; Schwerdtfeger P
    J Chem Phys; 2013 May; 138(17):174113. PubMed ID: 23656120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing the accuracy of SAPT(DFT) interaction energies by comparison with experimentally derived noble gas potentials and molecular crystal lattice energies.
    Bordner AJ
    Chemphyschem; 2012 Dec; 13(17):3981-8. PubMed ID: 23060262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calculations of nuclear quadrupole coupling in noble gas-noble metal fluorides: interplay of relativistic and electron correlation effects.
    Lantto P; Vaara J
    J Chem Phys; 2006 Nov; 125(17):174315. PubMed ID: 17100447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relativistic effects on the nuclear magnetic shieldings of rare-gas atoms and halogen in hydrogen halides within relativistic polarization propagator theory.
    Gomez SS; Maldonado A; Aucar GA
    J Chem Phys; 2005 Dec; 123(21):214108. PubMed ID: 16356040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leading-order relativistic effects on nuclear magnetic resonance shielding tensors.
    Manninen P; Ruud K; Lantto P; Vaara J
    J Chem Phys; 2005 Mar; 122(11):114107. PubMed ID: 15836201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relativistic heavy-atom effects on heavy-atom nuclear shieldings.
    Lantto P; Romero RH; Gómez SS; Aucar GA; Vaara J
    J Chem Phys; 2006 Nov; 125(18):184113. PubMed ID: 17115744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size versus polarizability in protein-ligand interactions: binding of noble gases within engineered cavities in phage T4 lysozyme.
    Quillin ML; Breyer WA; Griswold IJ; Matthews BW
    J Mol Biol; 2000 Sep; 302(4):955-77. PubMed ID: 10993735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inner-shell single and double ionization potentials of aminophenol isomers.
    Kryzhevoi NV; Santra R; Cederbaum LS
    J Chem Phys; 2011 Aug; 135(8):084302. PubMed ID: 21895180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Possible electronic decay channels in the ionization spectra of small clusters composed of Ar and Xe: A four-component relativistic treatment.
    Fasshauer E; Kryzhevoi NV; Pernpointner M
    J Chem Phys; 2010 Jul; 133(1):014303. PubMed ID: 20614965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-range dispersion coefficients for Li, Li(+), and Be(+) interacting with the rare gases.
    Tang LY; Zhang JY; Yan ZC; Shi TY; Mitroy J
    J Chem Phys; 2010 Sep; 133(10):104306. PubMed ID: 20849171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The one-particle Green's function method in the Dirac-Hartree-Fock framework. II. Third-order valence ionization energies of the noble gases, CO and ICN.
    Pernpointner M
    J Chem Phys; 2004 Nov; 121(18):8782-91. PubMed ID: 15527342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. H3(+) as a trap for noble gases-3: multiple trapping of neon, argon, and krypton in X(n)H3(+) (n = 1-3).
    Pauzat F; Ellinger Y; Pilmé J; Mousis O
    J Chem Phys; 2009 May; 130(17):174313. PubMed ID: 19425782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of Coulomb focusing on the electron transverse momentum of Above-Threshold Ionization.
    Huang C; Liao Q; Zhou Y; Lu P
    Opt Express; 2010 Jun; 18(13):14293-300. PubMed ID: 20588564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical study of the structures and electronic properties of all-surface KI and CsI nanocrystals encapsulated in single walled carbon nanotubes.
    Bichoutskaia E; Pyper NC
    J Chem Phys; 2008 Oct; 129(15):154701. PubMed ID: 19045212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate relativistic small-core pseudopotentials for actinides. energy adjustment for uranium and first applications to uranium hydride.
    Dolg M; Cao X
    J Phys Chem A; 2009 Nov; 113(45):12573-81. PubMed ID: 19552393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relativistic effective valence shell Hamiltonian method: excitation and ionization energies of heavy metal atoms.
    Chaudhuri RK; Freed KF
    J Chem Phys; 2005 May; 122(20):204111. PubMed ID: 15945717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.