These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 21823710)

  • 1. Ion-water clusters, bulk medium effects, and ion hydration.
    Merchant S; Dixit PD; Dean KR; Asthagiri D
    J Chem Phys; 2011 Aug; 135(5):054505. PubMed ID: 21823710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamically dominant hydration structures of aqueous ions.
    Merchant S; Asthagiri D
    J Chem Phys; 2009 May; 130(19):195102. PubMed ID: 19466866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water coordination structures and the excess free energy of the liquid.
    Merchant S; Shah JK; Asthagiri D
    J Chem Phys; 2011 Mar; 134(12):124514. PubMed ID: 21456683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quasichemical analysis of the cluster-pair approximation for the thermodynamics of proton hydration.
    Pollard T; Beck TL
    J Chem Phys; 2014 Jun; 140(22):224507. PubMed ID: 24929407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quasichemical and structural analysis of polarizable anion hydration.
    Rogers DM; Beck TL
    J Chem Phys; 2010 Jan; 132(1):014505. PubMed ID: 20078170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron hydration and ion-electron pairs in water clusters containing trivalent metal ions.
    Donald WA; Demireva M; Leib RD; Aiken MJ; Williams ER
    J Am Chem Soc; 2010 Apr; 132(13):4633-40. PubMed ID: 20218722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies of the thermodynamic properties of hydrogen gas in bulk water.
    Sabo D; Varma S; Martin MG; Rempe SB
    J Phys Chem B; 2008 Jan; 112(3):867-76. PubMed ID: 18154326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A theoretical investigation of the relative stability of hydrated glycine and methylcarbamic acid--from water clusters to interstellar ices.
    Kayi H; Kaiser RI; Head JD
    Phys Chem Chem Phys; 2012 Apr; 14(14):4942-58. PubMed ID: 22382393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MST continuum study of the hydration free energies of monovalent ionic species.
    Curutchet C; Bidon-Chanal A; Soteras I; Orozco M; Luque FJ
    J Phys Chem B; 2005 Mar; 109(8):3565-74. PubMed ID: 16851394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydration free energies of monovalent ions in transferable intermolecular potential four point fluctuating charge water: an assessment of simulation methodology and force field performance and transferability.
    Warren GL; Patel S
    J Chem Phys; 2007 Aug; 127(6):064509. PubMed ID: 17705614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing the accuracy of approximate treatments of ion hydration based on primitive quasichemical theory.
    Roux B; Yu H
    J Chem Phys; 2010 Jun; 132(23):234101. PubMed ID: 20572683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accuracy of the microsolvation-continuum approach in computing the pK(a) and the free energies of formation of phosphate species in aqueous solution.
    Tang E; Di Tommaso D; de Leeuw NH
    Phys Chem Chem Phys; 2010 Nov; 12(41):13804-15. PubMed ID: 20862433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of the hydration of carbon dioxide: direct participation of H2O versus microsolvation.
    Nguyen MT; Matus MH; Jackson VE; Vu TN; Rustad JR; Dixon DA
    J Phys Chem A; 2008 Oct; 112(41):10386-98. PubMed ID: 18816037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrated Anions: From Clusters to Bulk Solution with Quasi-Chemical Theory.
    Gomez DT; Pratt LR; Asthagiri DN; Rempe SB
    Acc Chem Res; 2022 Aug; 55(16):2201-2212. PubMed ID: 35829622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Length scales and interfacial potentials in ion hydration.
    Shi Y; Beck TL
    J Chem Phys; 2013 Jul; 139(4):044504. PubMed ID: 23901990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aqueous solvation free energies of ions and ion-water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton.
    Kelly CP; Cramer CJ; Truhlar DG
    J Phys Chem B; 2006 Aug; 110(32):16066-81. PubMed ID: 16898764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydration of copper(II): new insights from density functional theory and the COSMO solvation model.
    Bryantsev VS; Diallo MS; van Duin AC; Goddard WA
    J Phys Chem A; 2008 Sep; 112(38):9104-12. PubMed ID: 18763748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Free energy of transfer of hydrated ion clusters from water to an immiscible organic solvent.
    Rose D; Benjamin I
    J Phys Chem B; 2009 Jul; 113(27):9296-303. PubMed ID: 19534541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical study of chlorophyll a hydrates formation in aqueous organic solvents.
    Ben Fredj A; Ruiz-López MF
    J Phys Chem B; 2010 Jan; 114(1):681-7. PubMed ID: 20020703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microsolvation of the sodium and iodide ions and their ion pair in acetonitrile clusters: a theoretical study.
    Nguyen TN; Hughes SR; Peslherbe GH
    J Phys Chem B; 2008 Jan; 112(2):621-35. PubMed ID: 18183958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.