BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 21823740)

  • 1. A new material mapping procedure for quantitative computed tomography-based, continuum finite element analyses of the vertebra.
    Unnikrishnan GU; Morgan EF
    J Biomech Eng; 2011 Jul; 133(7):071001. PubMed ID: 21823740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of fabric on the accuracy of computed tomography-based finite element analyses of the vertebra.
    Wu Y; Morgan EF
    Biomech Model Mechanobiol; 2020 Apr; 19(2):505-517. PubMed ID: 31506861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative Computed Tomography Protocols Affect Material Mapping and Quantitative Computed Tomography-Based Finite-Element Analysis Predicted Stiffness.
    Giambini H; Dragomir-Daescu D; Nassr A; Yaszemski MJ; Zhao C
    J Biomech Eng; 2016 Sep; 138(9):0910031-7. PubMed ID: 27428281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite element modeling of the human thoracolumbar spine.
    Liebschner MA; Kopperdahl DL; Rosenberg WS; Keaveny TM
    Spine (Phila Pa 1976); 2003 Mar; 28(6):559-65. PubMed ID: 12642762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of specimen-specific anisotropic material properties in quantitative computed tomography-based finite element analysis of the vertebra.
    Unnikrishnan GU; Barest GD; Berry DB; Hussein AI; Morgan EF
    J Biomech Eng; 2013 Oct; 135(10):101007-11. PubMed ID: 23942609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of factors influencing finite element vertebral model predictions.
    Jones AC; Wilcox RK
    J Biomech Eng; 2007 Dec; 129(6):898-903. PubMed ID: 18067394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of in situ/in vitro three-dimensional quantitative computed tomography image voxel size on the finite element model of human vertebral cancellous bone.
    Lu Y; Engelke K; Glueer CC; Morlock MM; Huber G
    Proc Inst Mech Eng H; 2014 Nov; 228(11):1208-13. PubMed ID: 25500865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. QCT-based finite element models predict human vertebral strength in vitro significantly better than simulated DEXA.
    Dall'Ara E; Pahr D; Varga P; Kainberger F; Zysset P
    Osteoporos Int; 2012 Feb; 23(2):563-72. PubMed ID: 21344244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ parameter identification of optimal density-elastic modulus relationships in subject-specific finite element models of the proximal femur.
    Cong A; Buijs JO; Dragomir-Daescu D
    Med Eng Phys; 2011 Mar; 33(2):164-73. PubMed ID: 21030287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography.
    Crawford RP; Cann CE; Keaveny TM
    Bone; 2003 Oct; 33(4):744-50. PubMed ID: 14555280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of the effect of mesh density on the material property discretisation within QCT based FE models: a practical example using the implanted proximal tibia.
    Perillo-Marcone A; Alonso-Vazquez A; Taylor M
    Comput Methods Biomech Biomed Engin; 2003 Feb; 6(1):17-26. PubMed ID: 12623434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An improved method for the automatic mapping of computed tomography numbers onto finite element models.
    Taddei F; Pancanti A; Viceconti M
    Med Eng Phys; 2004 Jan; 26(1):61-9. PubMed ID: 14644599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterogeneous material mapping methods for patient-specific finite element models of pelvic trabecular bone: A convergence study.
    Babazadeh Naseri A; Dunbar NJ; Baines AJ; Akin JE; Higgs Iii CF; Fregly BJ
    Med Eng Phys; 2021 Oct; 96():1-12. PubMed ID: 34565547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of 3D QCT scan protocol on the QCT-based finite element models of human vertebral cancellous bone.
    Lu Y; Engelke K; Püschel K; Morlock MM; Huber G
    Med Eng Phys; 2014 Aug; 36(8):1069-73. PubMed ID: 24894031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. QCT-FE modeling of the proximal tibia: Effect of mapping strategy on convergence time and model accuracy.
    Ashjaee N; Kalajahi SMH; Johnston JD
    Med Eng Phys; 2021 Feb; 88():41-46. PubMed ID: 33485512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constructing anisotropic finite element model of bone from computed tomography (CT).
    Kazembakhshi S; Luo Y
    Biomed Mater Eng; 2014; 24(6):2619-26. PubMed ID: 25226965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite-element modeling of bones from CT data: sensitivity to geometry and material uncertainties.
    Taddei F; Martelli S; Reggiani B; Cristofolini L; Viceconti M
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2194-200. PubMed ID: 17073324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Material properties assignment to finite element models of bone structures: a new method.
    Zannoni C; Mantovani R; Viceconti M
    Med Eng Phys; 1998 Dec; 20(10):735-40. PubMed ID: 10223642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite element analyses of human vertebral bodies embedded in polymethylmethalcrylate or loaded via the hyperelastic intervertebral disc models provide equivalent predictions of experimental strength.
    Lu Y; Maquer G; Museyko O; Püschel K; Engelke K; Zysset P; Morlock M; Huber G
    J Biomech; 2014 Jul; 47(10):2512-6. PubMed ID: 24818795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of Bone Fragility in Patients With Multiple Myeloma Using QCT-Based Finite Element Modeling.
    Campbell GM; Peña JA; Giravent S; Thomsen F; Damm T; Glüer CC; Borggrefe J
    J Bone Miner Res; 2017 Jan; 32(1):151-156. PubMed ID: 27454865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.