These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

48 related articles for article (PubMed ID: 21823755)

  • 1. Flux balance analysis for ethylene formation in genetically engineered Saccharomyces cerevisiae.
    Larsson C; Snoep JL; Norbeck J; Albers E
    IET Syst Biol; 2011 Jul; 5(4):245-51. PubMed ID: 21823755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ethylene production in relation to nitrogen metabolism in Saccharomyces cerevisiae.
    Johansson N; Persson KO; Quehl P; Norbeck J; Larsson C
    FEMS Yeast Res; 2014 Nov; 14(7):1110-8. PubMed ID: 25195797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic analysis of the synthesis of high levels of intracellular human SOD in Saccharomyces cerevisiae rhSOD 2060 411 SGA122.
    Gonzalez R; Andrews BA; Molitor J; Asenjo JA
    Biotechnol Bioeng; 2003 Apr; 82(2):152-69. PubMed ID: 12584757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-scale analysis of Saccharomyces cerevisiae metabolism and ethanol production in fed-batch culture.
    Hjersted JL; Henson MA; Mahadevan R
    Biotechnol Bioeng; 2007 Aug; 97(5):1190-204. PubMed ID: 17243146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling threshold phenomena, metabolic pathways switches and signals in chemostat-cultivated cells: the Crabtree effect in Saccharomyces cerevisiae.
    Thierie J
    J Theor Biol; 2004 Feb; 226(4):483-501. PubMed ID: 14759654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ethylene production by metabolic engineering of the yeast Saccharomyces cerevisiae.
    Pirkov I; Albers E; Norbeck J; Larsson C
    Metab Eng; 2008 Sep; 10(5):276-80. PubMed ID: 18640286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Steady-state and dynamic flux balance analysis of ethanol production by Saccharomyces cerevisiae.
    Hjersted JL; Henson MA
    IET Syst Biol; 2009 May; 3(3):167-79. PubMed ID: 19449977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic flux analysis of RQ-controlled microaerobic ethanol production by Saccharomyces cerevisiae.
    Franzén CJ
    Yeast; 2003 Jan; 20(2):117-32. PubMed ID: 12518316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative comparison of transient growth of Saccharomyces cerevisiae, Saccharomyces kluyveri, and Kluyveromyces lactis.
    Herwig C; Von Stockar U
    Biotechnol Bioeng; 2003 Mar; 81(7):837-47. PubMed ID: 12557317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of flux regulation coefficients from elementary flux modes: A systems biology tool for analysis of metabolic networks.
    Nookaew I; Meechai A; Thammarongtham C; Laoteng K; Ruanglek V; Cheevadhanarak S; Nielsen J; Bhumiratana S
    Biotechnol Bioeng; 2007 Aug; 97(6):1535-49. PubMed ID: 17238207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of factors for improved ethylene production via the ethylene forming enzyme in chemostat cultures of Saccharomyces cerevisiae.
    Johansson N; Quehl P; Norbeck J; Larsson C
    Microb Cell Fact; 2013 Oct; 12():89. PubMed ID: 24083346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-scale in silico aided metabolic analysis and flux comparisons of Escherichia coli to improve succinate production.
    Wang Q; Chen X; Yang Y; Zhao X
    Appl Microbiol Biotechnol; 2006 Dec; 73(4):887-94. PubMed ID: 16927085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic flux balance modeling of microbial co-cultures for efficient batch fermentation of glucose and xylose mixtures.
    Hanly TJ; Henson MA
    Biotechnol Bioeng; 2011 Feb; 108(2):376-85. PubMed ID: 20882517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A metabolic network stoichiometry analysis of microbial growth and product formation.
    van Gulik WM; Heijnen JJ
    Biotechnol Bioeng; 1995 Dec; 48(6):681-98. PubMed ID: 18623538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repeated-batch fermentations of xylose and glucose-xylose mixtures using a respiration-deficient Saccharomyces cerevisiae engineered for xylose metabolism.
    Kim SR; Lee KS; Choi JH; Ha SJ; Kweon DH; Seo JH; Jin YS
    J Biotechnol; 2010 Nov; 150(3):404-7. PubMed ID: 20933550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A potential mechanism of energy-metabolism oscillation in an aerobic chemostat culture of the yeast Saccharomyces cerevisiae.
    Xu Z; Tsurugi K
    FEBS J; 2006 Apr; 273(8):1696-709. PubMed ID: 16623706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redirection of flux through the FPP branch-point in Saccharomyces cerevisiae by down-regulating squalene synthase.
    Paradise EM; Kirby J; Chan R; Keasling JD
    Biotechnol Bioeng; 2008 Jun; 100(2):371-8. PubMed ID: 18175359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of methionine recycling for ethylene synthesis in Arabidopsis.
    Bürstenbinder K; Rzewuski G; Wirtz M; Hell R; Sauter M
    Plant J; 2007 Jan; 49(2):238-49. PubMed ID: 17144895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic flux analysis of the sterol pathway in the yeast Saccharomyces cerevisiae.
    Maczek J; Junne S; Nowak P; Goetz P
    Bioprocess Biosyst Eng; 2006 Oct; 29(4):241-52. PubMed ID: 16838149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling of yeast metabolism and process dynamics in batch fermentation.
    Sainz J; Pizarro F; Pérez-Correa JR; Agosin E
    Biotechnol Bioeng; 2003 Mar; 81(7):818-28. PubMed ID: 12557315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.