These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

48 related articles for article (PubMed ID: 21823755)

  • 21. Optimization of fed-batch Saccharomyces cerevisiae fermentation using dynamic flux balance models.
    Hjersted JL; Henson MA
    Biotechnol Prog; 2006; 22(5):1239-48. PubMed ID: 17022660
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolic response to MMS-mediated DNA damage in Saccharomyces cerevisiae is dependent on the glucose concentration in the medium.
    Kitanovic A; Walther T; Loret MO; Holzwarth J; Kitanovic I; Bonowski F; Van Bui N; Francois JM; Wölfl S
    FEMS Yeast Res; 2009 Jun; 9(4):535-51. PubMed ID: 19341380
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Constraint-based functional similarity of metabolic genes: going beyond network topology.
    Rokhlenko O; Shlomi T; Sharan R; Ruppin E; Pinter RY
    Bioinformatics; 2007 Aug; 23(16):2139-46. PubMed ID: 17586548
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering.
    Asadollahi MA; Maury J; Patil KR; Schalk M; Clark A; Nielsen J
    Metab Eng; 2009 Nov; 11(6):328-34. PubMed ID: 19619667
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metabolic capacity estimation of Escherichia coli as a platform for redox biocatalysis: constraint-based modeling and experimental verification.
    Blank LM; Ebert BE; Bühler B; Schmid A
    Biotechnol Bioeng; 2008 Aug; 100(6):1050-65. PubMed ID: 18553399
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Direct biosynthesis of ethylene].
    Sun Z; Chen Y
    Sheng Wu Gong Cheng Xue Bao; 2013 Oct; 29(10):1431-40. PubMed ID: 24432658
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Use of pantothenate as a metabolic switch increases the genetic stability of farnesene producing Saccharomyces cerevisiae.
    Sandoval CM; Ayson M; Moss N; Lieu B; Jackson P; Gaucher SP; Horning T; Dahl RH; Denery JR; Abbott DA; Meadows AL
    Metab Eng; 2014 Sep; 25():215-26. PubMed ID: 25076380
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolic engineering of the complete pathway leading to heterologous biosynthesis of various flavonoids and stilbenoids in Saccharomyces cerevisiae.
    Trantas E; Panopoulos N; Ververidis F
    Metab Eng; 2009 Nov; 11(6):355-66. PubMed ID: 19631278
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evolution of ethylene by Saccharomyces cerevisiae as influenced by the carbon source for growth and the presence of air.
    Thomas KC; Spencer M
    Can J Microbiol; 1978 Jun; 24(6):637-42. PubMed ID: 352497
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Flux balance analysis of a genome-scale yeast model constrained by exometabolomic data allows metabolic system identification of genetically different strains.
    Cakir T; Efe C; Dikicioglu D; Hortaçsu A; Kirdar B; Oliver SG
    Biotechnol Prog; 2007; 23(2):320-6. PubMed ID: 17373823
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Funneled landscape leads to robustness of cell networks: yeast cell cycle.
    Wang J; Huang B; Xia X; Sun Z
    PLoS Comput Biol; 2006 Nov; 2(11):e147. PubMed ID: 17112311
    [TBL] [Abstract][Full Text] [Related]  

  • 32. L-methionine as an ethylene precursor in Saccharomyces cerevisiae.
    Thomas KC; Spencer M
    Can J Microbiol; 1977 Dec; 23(12):1669-74. PubMed ID: 340018
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ethylene formation by cell-free extracts of Escherichia coli.
    Ince JE; Knowles CJ
    Arch Microbiol; 1986 Nov; 146(2):151-8. PubMed ID: 3541827
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ethylene formation by cultures of Escherichia coli.
    Ince JE; Knowles CJ
    Arch Microbiol; 1985 Apr; 141(3):209-13. PubMed ID: 3890791
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of gas pressurization with ethylene on the ultrastructure of the yeast Saccharomyces cerevisiae.
    Kawachi S; Arao T; Suzuki Y; Tamura K
    Biosci Biotechnol Biochem; 2011; 75(4):790-2. PubMed ID: 21512223
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Overcoming substrate limitations for improved production of ethylene in E. coli.
    Lynch S; Eckert C; Yu J; Gill R; Maness PC
    Biotechnol Biofuels; 2016; 9():3. PubMed ID: 26734073
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CONSTRICTOR: constraint modification provides insight into design of biochemical networks.
    Erickson KE; Gill RT; Chatterjee A
    PLoS One; 2014; 9(11):e113820. PubMed ID: 25422896
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative sequence analysis and mutagenesis of ethylene forming enzyme (EFE) 2-oxoglutarate/Fe(II)-dependent dioxygenase homologs.
    Johansson N; Persson KO; Larsson C; Norbeck J
    BMC Biochem; 2014 Oct; 15():22. PubMed ID: 25278273
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ethylene-forming enzyme and bioethylene production.
    Eckert C; Xu W; Xiong W; Lynch S; Ungerer J; Tao L; Gill R; Maness PC; Yu J
    Biotechnol Biofuels; 2014 Mar; 7(1):33. PubMed ID: 24589138
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.