These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 2182379)

  • 1. A possible role of histidine in a nickel resistant mechanism of Saccharomyces cerevisiae.
    Joho M; Inouhe M; Tohoyama H; Murayama T
    FEMS Microbiol Lett; 1990 Jan; 54(1-3):333-8. PubMed ID: 2182379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The subcellular distribution of nickel in Ni-sensitive and Ni-resistant strains of Saccharomyces cerevisiae.
    Joho M; Ishikawa Y; Kunikane M; Inouhe M; Tohoyama H; Murayama T
    Microbios; 1992; 71(287):149-59. PubMed ID: 1360616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of L-histidine in conferring tolerance to Ni2+ in Sacchromyces cerevisiae cells.
    Farcasanu IC; Mizunuma M; Nishiyama F; Miyakawa T
    Biosci Biotechnol Biochem; 2005 Dec; 69(12):2343-8. PubMed ID: 16377892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The isolation and characterization of Ni2+ resistant mutants of Saccharomyces cerevisiae.
    Joho M; Imada Y; Murayama T
    Microbios; 1987; 51(208-209):183-90. PubMed ID: 3316939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co2+ and Ni2+ resistance in Saccharomyces cerevisiae associated with a reduction in the accumulation of Mg2+.
    Joho M; Tarumi K; Inouhe M; Tohoyama H; Murayama T
    Microbios; 1991; 67(272-273):177-86. PubMed ID: 1779877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toxicity of copper, cobalt, and nickel salts is dependent on histidine metabolism in the yeast Saccharomyces cerevisiae.
    Pearce DA; Sherman F
    J Bacteriol; 1999 Aug; 181(16):4774-9. PubMed ID: 10438744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of the basis for Ni tolerance conferred by the expression of TjZnt1 and TjZnt2 in yeast strains.
    Mizuno T; Usui K; Nishida S; Unno T; Obata H
    Plant Physiol Biochem; 2007 May; 45(5):371-8. PubMed ID: 17475501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of Spt7p in vacuolar polyphosphate level of Saccharomyces cerevisiae.
    Nishimura K; Yasumura K; Igarashi K; Kakinuma Y
    Biochem Biophys Res Commun; 1999 Apr; 257(3):835-8. PubMed ID: 10208869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Response of Saccharomyces cerevisiae to cadmium and nickel stress: the use of the sugar cane vinasse as a potential mitigator.
    Oliveira RP; Basso LC; Junior AP; Penna TC; Del Borghi M; Converti A
    Biol Trace Elem Res; 2012 Jan; 145(1):71-80. PubMed ID: 21809054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary engineering and transcriptomic analysis of nickel-resistant Saccharomyces cerevisiae.
    Küçükgöze G; Alkım C; Yılmaz Ü; Kısakesen Hİ; Gündüz S; Akman S; Çakar ZP
    FEMS Yeast Res; 2013 Dec; 13(8):731-46. PubMed ID: 23992612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA-protein crosslinks induced by nickel compounds in isolated rat lymphocytes: role of reactive oxygen species and specific amino acids.
    Chakrabarti SK; Bai C; Subramanian KS
    Toxicol Appl Pharmacol; 2001 Feb; 170(3):153-65. PubMed ID: 11162780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The endosomal sorting complex required for transport (ESCRT) is required for the sensitivity of yeast cells to nickel ions in Saccharomyces cerevisiae.
    Luo C; Cao C; Jiang L
    FEMS Yeast Res; 2016 May; 16(3):. PubMed ID: 26994103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selection of ribosomal mutants by antibiotic suppression in yeast.
    Bayliss FT; Vinopal RT
    Science; 1971 Dec; 174(4016):1339-41. PubMed ID: 4944401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effect of culture media on the composition of free amino acids in Saccharomyces cerevisiae yeast].
    Khalilova EA; Abramov ShA
    Prikl Biokhim Mikrobiol; 2001; 37(5):578-81. PubMed ID: 11605471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of Ni transport into brush border membrane vesicles (BBMVs) isolated from the kidney of the freshwater rainbow trout (Oncorhynchus mykiss).
    Pane EF; Glover CN; Patel M; Wood CM
    Biochim Biophys Acta; 2006 Jan; 1758(1):74-84. PubMed ID: 16460665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification, characterization, and functional analysis of a truncated Klebsiella aerogenes UreE urease accessory protein lacking the histidine-rich carboxyl terminus.
    Brayman TG; Hausinger RP
    J Bacteriol; 1996 Sep; 178(18):5410-6. PubMed ID: 8808929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The cadmium tolerance in Saccharomyces cerevisiae depends on inorganic polyphosphate.
    Trilisenko L; Kulakovskaya E; Kulakovskaya T
    J Basic Microbiol; 2017 Nov; 57(11):982-986. PubMed ID: 28809038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superoxide dismutase activity and novel reactions with hydrogen peroxide of histidine-containing nickel(II)-oligopeptide complexes and nickel(II)-induced structural changes in synthetic DNA.
    Nieboer E; Tom RT; Rossetto FE
    Biol Trace Elem Res; 1989; 21():23-33. PubMed ID: 2484592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nickel accumulation by the green algae-like Euglena gracilis.
    García-García JD; Peña-Sanabria KA; Sánchez-Thomas R; Moreno-Sánchez R
    J Hazard Mater; 2018 Feb; 343():10-18. PubMed ID: 28938155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nickel resistance in fission yeast associated with the magnesium transport system.
    Sarikaya AT; Akman G; Temizkan G
    Mol Biotechnol; 2006 Feb; 32(2):139-46. PubMed ID: 16444015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.