These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 21823946)

  • 1. Biomechanical response of ribs under quasistatic frontal loading.
    Kindig M; Lau AG; Kent RW
    Traffic Inj Prev; 2011 Aug; 12(4):377-87. PubMed ID: 21823946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rib fractures under anterior-posterior dynamic loads: experimental and finite-element study.
    Li Z; Kindig MW; Kerrigan JR; Untaroiu CD; Subit D; Crandall JR; Kent RW
    J Biomech; 2010 Jan; 43(2):228-34. PubMed ID: 19875122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel ex vivo model of compressive immature rib fractures at pathophysiological rates of loading.
    Beadle N; Burnett TL; Hoyland JA; Sherratt MJ; Freemont AJ
    J Mech Behav Biomed Mater; 2015 Nov; 51():154-62. PubMed ID: 26253206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of age on the structural properties of human ribs.
    Agnew AM; Schafman M; Moorhouse K; White SE; Kang YS
    J Mech Behav Biomed Mater; 2015 Jan; 41():302-14. PubMed ID: 25260951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural response of cadaveric ribcages under a localized loading: stiffness and kinematic trends.
    Kindig MW; Lau AG; Forman JL; Kent RW
    Stapp Car Crash J; 2010 Nov; 54():337-80. PubMed ID: 21512914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rib fracture timing in dynamic belt tests with human cadavers.
    Duma SM; Kemper AR; Stitzel JD; McNally C; Kennedy EA; Matsuoka F
    Clin Anat; 2011 Apr; 24(3):327-38. PubMed ID: 21322063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison between rib fracture patterns in peri- and post-mortem compressive injury in a piglet model.
    Bradley AL; Swain MV; Neil Waddell J; Das R; Athens J; Kieser JA
    J Mech Behav Biomed Mater; 2014 May; 33():67-75. PubMed ID: 23867291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Less-invasive stabilization of rib fractures by intramedullary fixation: a biomechanical evaluation.
    Bottlang M; Helzel I; Long W; Fitzpatrick D; Madey S
    J Trauma; 2010 May; 68(5):1218-24. PubMed ID: 20068479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural analysis of human rib fracture and implications for forensic interpretation.
    Daegling DJ; Warren MW; Hotzman JL; Self CJ
    J Forensic Sci; 2008 Nov; 53(6):1301-7. PubMed ID: 18798775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of intramedullary rib splints for less-invasive stabilisation of rib fractures.
    Helzel I; Long W; Fitzpatrick D; Madey S; Bottlang M
    Injury; 2009 Oct; 40(10):1104-10. PubMed ID: 19573871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical testing of a novel, minimally invasive rib fracture plating system.
    Sales JR; Ellis TJ; Gillard J; Liu Q; Chen JC; Ham B; Mayberry JC
    J Trauma; 2008 May; 64(5):1270-4. PubMed ID: 18469649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscle tetanus and loading condition effects on the elastic and viscous characteristics of the thorax.
    Kent R; Bass CR; Woods W; Sherwood C; Madeley NJ; Salzar R; Kitagawa Y
    Traffic Inj Prev; 2003 Dec; 4(4):297-314. PubMed ID: 14630579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The biomechanical response of human bone: the influence of bone volume and mineral density.
    Kemper A; Ng T; Duma S
    Biomed Sci Instrum; 2006; 42():284-9. PubMed ID: 16817622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical testing of two devices for internal fixation of fractured ribs.
    Campbell N; Richardson M; Antippa P
    J Trauma; 2010 May; 68(5):1234-8. PubMed ID: 20093978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detailed subject-specific FE rib modeling for fracture prediction.
    Iraeus J; Lundin L; Storm S; Agnew A; Kang YS; Kemper A; Albert D; Holcombe S; Pipkorn B
    Traffic Inj Prev; 2019; 20(sup2):S88-S95. PubMed ID: 31589083
    [No Abstract]   [Full Text] [Related]  

  • 16. [The mechanism of fatigue fracture of the ribs].
    Satou S; Konisi N
    Nihon Seikeigeka Gakkai Zasshi; 1991 Sep; 65(9):708-19. PubMed ID: 1960472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compressive rib fracture: peri-mortem and post-mortem trauma patterns in a pig model.
    Kieser JA; Weller S; Swain MV; Neil Waddell J; Das R
    Leg Med (Tokyo); 2013 Jul; 15(4):193-201. PubMed ID: 23453778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of fracture mechanics to failure in manatee rib bone.
    Yan J; Clifton KB; Reep RL; Mecholsky JJ
    J Biomech Eng; 2006 Jun; 128(3):281-9. PubMed ID: 16706577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acquiring non-censored rib fracture data during dynamic belt loading.
    Duma S; Stitzel J; Kemper A; McNally C; Kennedy E; Brolinson G; Matsuoka F
    Biomed Sci Instrum; 2006; 42():148-53. PubMed ID: 16817600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of arm position on thoracic response in side impacts.
    Kemper AR; McNally C; Kennedy EA; Manoogian SJ; Duma SM
    Stapp Car Crash J; 2008 Nov; 52():379-420. PubMed ID: 19085171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.