These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 21824153)

  • 1. Electrophysiological correlates of the maintenance of the representation of pitch objects in acoustic short-term memory.
    Guimond S; Vachon F; Nolden S; Lefebvre C; Grimault S; Jolicoeur P
    Psychophysiology; 2011 Nov; 48(11):1500-1509. PubMed ID: 21824153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrophysiological correlates of the retention of tones differing in timbre in auditory short-term memory.
    Nolden S; Bermudez P; Alunni-Menichini K; Lefebvre C; Grimault S; Jolicoeur P
    Neuropsychologia; 2013 Nov; 51(13):2740-6. PubMed ID: 24036359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct electrophysiological indices of maintenance in auditory and visual short-term memory.
    Lefebvre C; Vachon F; Grimault S; Thibault J; Guimond S; Peretz I; Zatorre RJ; Jolicœur P
    Neuropsychologia; 2013 Nov; 51(13):2939-52. PubMed ID: 23938319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Saturation of auditory short-term memory causes a plateau in the sustained anterior negativity event-related potential.
    Alunni-Menichini K; Guimond S; Bermudez P; Nolden S; Lefebvre C; Jolicoeur P
    Brain Res; 2014 Dec; 1592():55-64. PubMed ID: 25446005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Memory for pure tone sequences without contour.
    Lefebvre C; Jolicœur P
    Brain Res; 2016 Jun; 1640(Pt B):222-31. PubMed ID: 26903419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Load-dependent brain activity related to acoustic short-term memory for pitch: magnetoencephalography and fMRI.
    Grimault S; Lefebvre C; Vachon F; Peretz I; Zatorre R; Robitaille N; Jolicoeur P
    Ann N Y Acad Sci; 2009 Jul; 1169():273-7. PubMed ID: 19673792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tone-language speakers show hemispheric specialization and differential cortical processing of contour and interval cues for pitch.
    Bidelman GM; Chung WL
    Neuroscience; 2015 Oct; 305():384-92. PubMed ID: 26265549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain activity is related to individual differences in the number of items stored in auditory short-term memory for pitch: evidence from magnetoencephalography.
    Grimault S; Nolden S; Lefebvre C; Vachon F; Hyde K; Peretz I; Zatorre R; Robitaille N; Jolicoeur P
    Neuroimage; 2014 Jul; 94():96-106. PubMed ID: 24642285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visual cues release the temporal coherence of auditory objects in auditory scene analysis.
    Rahne T; Böckmann-Barthel M
    Brain Res; 2009 Dec; 1300():125-34. PubMed ID: 19747455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decoding Concurrent Representations of Pitch and Location in Auditory Working Memory.
    Czoschke S; Fischer C; Bahador T; Bledowski C; Kaiser J
    J Neurosci; 2021 May; 41(21):4658-4666. PubMed ID: 33846233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Representation of harmonic frequencies in auditory memory: a mismatch negativity study.
    Zion-Golumbic E; Deouell LY; Whalen DH; Bentin S
    Psychophysiology; 2007 Sep; 44(5):671-9. PubMed ID: 17608799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An empirical reevaluation of absolute pitch: behavioral and electrophysiological measurements.
    Elmer S; Sollberger S; Meyer M; Jäncke L
    J Cogn Neurosci; 2013 Oct; 25(10):1736-53. PubMed ID: 23647515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Different hemispheric specializations for pitch and audioverbal working memory.
    Imm JH; Kang E; Youn T; Park H; Kim JI; Kang JI; Kim SJ; Lee JD; Park HJ
    Neuroreport; 2008 Jan; 19(1):99-103. PubMed ID: 18281901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maturation of cortical mismatch responses to occasional pitch change in early infancy: effects of presentation rate and magnitude of change.
    He C; Hotson L; Trainor LJ
    Neuropsychologia; 2009 Jan; 47(1):218-29. PubMed ID: 18722392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human EEG very high frequency oscillations reflect the number of matches with a template in auditory short-term memory.
    Lenz D; Jeschke M; Schadow J; Naue N; Ohl FW; Herrmann CS
    Brain Res; 2008 Jul; 1220():81-92. PubMed ID: 18036577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mismatch negativity in event-related potentials to auditory stimuli as a function of varying interstimulus interval.
    Böttcher-Gandor C; Ullsperger P
    Psychophysiology; 1992 Sep; 29(5):546-50. PubMed ID: 1410183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissociating aspects of temporal and frequency processing: a functional ERP study in humans.
    Gibbons H; Brandler S; Rammsayer TH
    Cortex; 2003; 39(4-5):947-65. PubMed ID: 14584561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visual encoding differentially affects auditory event-related potentials during working memory retrieval.
    Golob EJ; Starr A
    Psychophysiology; 2004 Mar; 41(2):186-92. PubMed ID: 15032984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The retention of simultaneous tones in auditory short-term memory: a magnetoencephalography study.
    Nolden S; Grimault S; Guimond S; Lefebvre C; Bermudez P; Jolicoeur P
    Neuroimage; 2013 Nov; 82():384-92. PubMed ID: 23751862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The electrophysiological effect of working memory load on involuntary attention in an auditory-visual distraction paradigm: an ERP study.
    Lv JY; Wang T; Qiu J; Feng SH; Tu S; Wei DT
    Exp Brain Res; 2010 Aug; 205(1):81-6. PubMed ID: 20628735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.