These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 21824171)

  • 1. Application of complementary luminescent and fluorescent imaging techniques to visualize nuclear and cytoplasmic Ca²⁺ signalling during the in vivo differentiation of slow muscle cells in zebrafish embryos under normal and dystrophic conditions.
    Webb SE; Cheung CC; Chan CM; Love DR; Miller AL
    Clin Exp Pharmacol Physiol; 2012 Jan; 39(1):78-86. PubMed ID: 21824171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ca
    Kelu JJ; Webb SE; Parrington J; Galione A; Miller AL
    Dev Biol; 2017 May; 425(2):109-129. PubMed ID: 28390800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualization, characterization and modulation of calcium signaling during the development of slow muscle cells in intact zebrafish embryos.
    Cheung CY; Webb SE; Love DR; Miller AL
    Int J Dev Biol; 2011; 55(2):153-74. PubMed ID: 21553383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Remodeling of Mitochondrial Flashes in Muscular Development and Dystrophy in Zebrafish.
    Zhang M; Sun T; Jian C; Lei L; Han P; Lv Q; Yang R; Zhou X; Xu J; Hu Y; Men Y; Huang Y; Zhang C; Zhu X; Wang X; Cheng H; Xiong JW
    PLoS One; 2015; 10(7):e0132567. PubMed ID: 26186000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-Pore Channel 2 activity is required for slow muscle cell-generated Ca(2+) signaling during myogenesis in intact zebrafish.
    Kelu JJ; Chan HL; Webb SE; Cheng AH; Ruas M; Parrington J; Galione A; Miller AL
    Int J Dev Biol; 2015; 59(7-9):313-25. PubMed ID: 26679948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Use of Complementary Luminescent and Fluorescent Techniques for Imaging Ca
    Webb SE; Miller AL
    Methods Mol Biol; 2019; 1929():73-93. PubMed ID: 30710268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dystrophin is required for the formation of stable muscle attachments in the zebrafish embryo.
    Bassett DI; Bryson-Richardson RJ; Daggett DF; Gautier P; Keenan DG; Currie PD
    Development; 2003 Dec; 130(23):5851-60. PubMed ID: 14573513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of ADP-ribosyl cyclase 1-like (ARC1-like) activity and NAADP signaling during slow muscle cell development in zebrafish embryos.
    Kelu JJ; Webb SE; Galione A; Miller AL
    Dev Biol; 2019 Jan; 445(2):211-225. PubMed ID: 30447180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myomaker is required for the fusion of fast-twitch myocytes in the zebrafish embryo.
    Zhang W; Roy S
    Dev Biol; 2017 Mar; 423(1):24-33. PubMed ID: 28161523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visualization of Mitochondrial Ca
    Vicente M; Salgado-Almario J; Soriano J; Burgos M; Domingo B; Llopis J
    Int J Mol Sci; 2019 Oct; 20(21):. PubMed ID: 31671636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visualization of Ca²+ signaling during embryonic skeletal muscle formation in vertebrates.
    Webb SE; Miller AL
    Cold Spring Harb Perspect Biol; 2011 Feb; 3(2):. PubMed ID: 21421918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatio-Temporal Differences in Dystrophin Dynamics at mRNA and Protein Levels Revealed by a Novel FlipTrap Line.
    Ruf-Zamojski F; Trivedi V; Fraser SE; Trinh le A
    PLoS One; 2015; 10(6):e0128944. PubMed ID: 26083378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muscle dysfunction in a zebrafish model of Duchenne muscular dystrophy.
    Widrick JJ; Alexander MS; Sanchez B; Gibbs DE; Kawahara G; Beggs AH; Kunkel LM
    Physiol Genomics; 2016 Nov; 48(11):850-860. PubMed ID: 27764767
    [No Abstract]   [Full Text] [Related]  

  • 14. Cell fusion is differentially regulated in zebrafish post-embryonic slow and fast muscle.
    Hromowyk KJ; Talbot JC; Martin BL; Janssen PML; Amacher SL
    Dev Biol; 2020 Jun; 462(1):85-100. PubMed ID: 32165147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization and investigation of zebrafish models of filamin-related myofibrillar myopathy.
    Ruparelia AA; Zhao M; Currie PD; Bryson-Richardson RJ
    Hum Mol Genet; 2012 Sep; 21(18):4073-83. PubMed ID: 22706277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Ca(2+) signaling in the external yolk syncytial layer during the late blastula and early gastrula periods of zebrafish development.
    Yuen MY; Webb SE; Chan CM; Thisse B; Thisse C; Miller AL
    Biochim Biophys Acta; 2013 Jul; 1833(7):1641-56. PubMed ID: 23142640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immobilization of Dystrophin and Laminin α2-Chain Deficient Zebrafish Larvae In Vivo Prevents the Development of Muscular Dystrophy.
    Li M; Arner A
    PLoS One; 2015; 10(11):e0139483. PubMed ID: 26536238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silver nanoparticles impair zebrafish skeletal and cardiac myofibrillogenesis and sarcomere formation.
    Xu QH; Guan P; Zhang T; Lu C; Li G; Liu JX
    Aquat Toxicol; 2018 Jul; 200():102-113. PubMed ID: 29729476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss of zebrafish Smyd1a interferes with myofibrillar integrity without triggering the misfolded myosin response.
    Paone C; Rudeck S; Etard C; Strähle U; Rottbauer W; Just S
    Biochem Biophys Res Commun; 2018 Feb; 496(2):339-345. PubMed ID: 29331378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muscle dysfunction and structural defects of dystrophin-null sapje mutant zebrafish larvae are rescued by ataluren treatment.
    Li M; Andersson-Lendahl M; Sejersen T; Arner A
    FASEB J; 2014 Apr; 28(4):1593-9. PubMed ID: 24371125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.