These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 21824430)

  • 21. Combinatorial Consensus Scoring for Ligand-Based Virtual Fragment Screening: A Comparative Case Study for Serotonin 5-HT(3)A, Histamine H(1), and Histamine H(4) Receptors.
    Schultes S; Kooistra AJ; Vischer HF; Nijmeijer S; Haaksma EE; Leurs R; de Esch IJ; de Graaf C
    J Chem Inf Model; 2015 May; 55(5):1030-44. PubMed ID: 25815783
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Consensus queries in ligand-based virtual screening experiments.
    Berenger F; Vu O; Meiler J
    J Cheminform; 2017 Nov; 9(1):60. PubMed ID: 29185065
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Target enhanced 2D similarity search by using explicit biological activity annotations and profiles.
    Yu X; Geer LY; Han L; Bryant SH
    J Cheminform; 2015; 7():55. PubMed ID: 26583046
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A similarity-based data-fusion approach to the visual characterization and comparison of compound databases.
    Medina-Franco JL; Maggiora GM; Giulianotti MA; Pinilla C; Houghten RA
    Chem Biol Drug Des; 2007 Nov; 70(5):393-412. PubMed ID: 17927720
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evolutionary chemical binding similarity approach integrated with 3D-QSAR method for effective virtual screening.
    Durai P; Ko YJ; Pan CH; Park K
    BMC Bioinformatics; 2020 Jul; 21(1):309. PubMed ID: 32664863
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhancing the effectiveness of virtual screening by fusing nearest neighbor lists: a comparison of similarity coefficients.
    Whittle M; Gillet VJ; Willett P; Alex A; Loesel J
    J Chem Inf Comput Sci; 2004; 44(5):1840-8. PubMed ID: 15446844
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Integrating structure- and ligand-based virtual screening: comparison of individual, parallel, and fused molecular docking and similarity search calculations on multiple targets.
    Tan L; Geppert H; Sisay MT; Gütschow M; Bajorath J
    ChemMedChem; 2008 Oct; 3(10):1566-71. PubMed ID: 18651695
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Similarity search profiling reveals effects of fingerprint scaling in virtual screening.
    Xue L; Stahura FL; Bajorath J
    J Chem Inf Comput Sci; 2004; 44(6):2032-9. PubMed ID: 15554672
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Effectiveness of Integrated Care Pathways for Adults and Children in Health Care Settings: A Systematic Review.
    Allen D; Gillen E; Rixson L
    JBI Libr Syst Rev; 2009; 7(3):80-129. PubMed ID: 27820426
    [TBL] [Abstract][Full Text] [Related]  

  • 30. LEAP into the Pfizer Global Virtual Library (PGVL) space: creation of readily synthesizable design ideas automatically.
    Hu Q; Peng Z; Kostrowicki J; Kuki A
    Methods Mol Biol; 2011; 685():253-76. PubMed ID: 20981528
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An overview of molecular fingerprint similarity search in virtual screening.
    Muegge I; Mukherjee P
    Expert Opin Drug Discov; 2016; 11(2):137-48. PubMed ID: 26558489
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient virtual high-content screening using a distance-aware transformer model.
    Sellner MS; Mahmoud AH; Lill MA
    J Cheminform; 2023 Feb; 15(1):18. PubMed ID: 36755346
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effectiveness of graph-based and fingerprint-based similarity measures for virtual screening of 2D chemical structure databases.
    Raymond JW; Willett P
    J Comput Aided Mol Des; 2002 Jan; 16(1):59-71. PubMed ID: 12197666
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Energy-based Neural Networks as a Tool for Harmony-based Virtual Screening.
    Zhokhova NI; Baskin II
    Mol Inform; 2017 Nov; 36(11):. PubMed ID: 28627811
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reverse fingerprinting, similarity searching by group fusion and fingerprint bit importance.
    Williams C
    Mol Divers; 2006 Aug; 10(3):311-32. PubMed ID: 17031535
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Critical comparison of virtual screening methods against the MUV data set.
    Tiikkainen P; Markt P; Wolber G; Kirchmair J; Distinto S; Poso A; Kallioniemi O
    J Chem Inf Model; 2009 Oct; 49(10):2168-78. PubMed ID: 19799417
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Focused library design in GPCR projects on the example of 5-HT(2c) agonists: comparison of structure-based virtual screening with ligand-based search methods.
    Bissantz C; Schalon C; Guba W; Stahl M
    Proteins; 2005 Dec; 61(4):938-52. PubMed ID: 16224780
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inverse frequency weighting of fragments for similarity-based virtual screening.
    Arif SM; Holliday JD; Willett P
    J Chem Inf Model; 2010 Aug; 50(8):1340-9. PubMed ID: 20672867
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chemical Structure Similarity Search for Ligand-based Virtual Screening: Methods and Computational Resources.
    Yan X; Liao C; Liu Z; Hagler AT; Gu Q; Xu J
    Curr Drug Targets; 2016; 17(14):1580-1585. PubMed ID: 26521773
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrostatic-field and surface-shape similarity for virtual screening and pose prediction.
    Cleves AE; Johnson SR; Jain AN
    J Comput Aided Mol Des; 2019 Oct; 33(10):865-886. PubMed ID: 31650386
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.