These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

429 related articles for article (PubMed ID: 21824527)

  • 1. The functional cycle of visual arrestins in photoreceptor cells.
    Gurevich VV; Hanson SM; Song X; Vishnivetskiy SA; Gurevich EV
    Prog Retin Eye Res; 2011 Nov; 30(6):405-30. PubMed ID: 21824527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The physiological roles of arrestin-1 in rod photoreceptor cells.
    Chen J
    Handb Exp Pharmacol; 2014; 219():85-99. PubMed ID: 24292825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct binding of visual arrestin to microtubules determines the differential subcellular localization of its splice variants in rod photoreceptors.
    Nair KS; Hanson SM; Kennedy MJ; Hurley JB; Gurevich VV; Slepak VZ
    J Biol Chem; 2004 Sep; 279(39):41240-8. PubMed ID: 15272005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light-dependent translocation of arrestin in the absence of rhodopsin phosphorylation and transducin signaling.
    Mendez A; Lem J; Simon M; Chen J
    J Neurosci; 2003 Apr; 23(8):3124-9. PubMed ID: 12716919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional comparisons of visual arrestins in rod photoreceptors of transgenic mice.
    Chan S; Rubin WW; Mendez A; Liu X; Song X; Hanson SM; Craft CM; Gurevich VV; Burns ME; Chen J
    Invest Ophthalmol Vis Sci; 2007 May; 48(5):1968-75. PubMed ID: 17460248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visual arrestin interaction with clathrin adaptor AP-2 regulates photoreceptor survival in the vertebrate retina.
    Moaven H; Koike Y; Jao CC; Gurevich VV; Langen R; Chen J
    Proc Natl Acad Sci U S A; 2013 Jun; 110(23):9463-8. PubMed ID: 23690606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct roles of arrestin 1 protein in photoreceptors during Drosophila development.
    Shieh BH; Kristaponyte I; Hong Y
    J Biol Chem; 2014 Jun; 289(26):18526-34. PubMed ID: 24838243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arrestins as multi-functional signaling adaptors.
    Gurevich VV; Gurevich EV; Cleghorn WM
    Handb Exp Pharmacol; 2008; (186):15-37. PubMed ID: 18491047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological Role of Arrestin-1 Oligomerization.
    Samaranayake S; Vishnivetskiy SA; Shores CR; Thibeault KC; Kook S; Chen J; Burns ME; Gurevich EV; Gurevich VV
    J Neurosci; 2020 Oct; 40(42):8055-8069. PubMed ID: 32948676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An arrestin homolog of blowfly photoreceptors stimulates visual-pigment phosphorylation by activating a membrane-associated protein kinase.
    Bentrop J; Plangger A; Paulsen R
    Eur J Biochem; 1993 Aug; 216(1):67-73. PubMed ID: 8365418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering visual arrestin-1 with special functional characteristics.
    Vishnivetskiy SA; Chen Q; Palazzo MC; Brooks EK; Altenbach C; Iverson TM; Hubbell WL; Gurevich VV
    J Biol Chem; 2013 Feb; 288(5):3394-405. PubMed ID: 23250748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Not just signal shutoff: the protective role of arrestin-1 in rod cells.
    Sommer ME; Hofmann KP; Heck M
    Handb Exp Pharmacol; 2014; 219():101-16. PubMed ID: 24292826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arrestin translocation is stoichiometric to rhodopsin isomerization and accelerated by phototransduction in Drosophila photoreceptors.
    Satoh AK; Xia H; Yan L; Liu CH; Hardie RC; Ready DF
    Neuron; 2010 Sep; 67(6):997-1008. PubMed ID: 20869596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox proteomic identification of visual arrestin dimerization in photoreceptor degeneration after photic injury.
    Lieven CJ; Ribich JD; Crowe ME; Levin LA
    Invest Ophthalmol Vis Sci; 2012 Jun; 53(7):3990-8. PubMed ID: 22599583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of Arrestin-Mediated Signaling.
    Gurevich VV; Gurevich EV
    Curr Protoc; 2023 Jun; 3(6):e821. PubMed ID: 37367499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monomeric rhodopsin is sufficient for normal rhodopsin kinase (GRK1) phosphorylation and arrestin-1 binding.
    Bayburt TH; Vishnivetskiy SA; McLean MA; Morizumi T; Huang CC; Tesmer JJ; Ernst OP; Sligar SG; Gurevich VV
    J Biol Chem; 2011 Jan; 286(2):1420-8. PubMed ID: 20966068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting individual GPCRs with redesigned nonvisual arrestins.
    Gimenez LE; Vishnivetskiy SA; Gurevich VV
    Handb Exp Pharmacol; 2014; 219():153-70. PubMed ID: 24292829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arrestin translocation is induced at a critical threshold of visual signaling and is superstoichiometric to bleached rhodopsin.
    Strissel KJ; Sokolov M; Trieu LH; Arshavsky VY
    J Neurosci; 2006 Jan; 26(4):1146-53. PubMed ID: 16436601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arrestin interactions with G protein-coupled receptors. Direct binding studies of wild type and mutant arrestins with rhodopsin, beta 2-adrenergic, and m2 muscarinic cholinergic receptors.
    Gurevich VV; Dion SB; Onorato JJ; Ptasienski J; Kim CM; Sterne-Marr R; Hosey MM; Benovic JL
    J Biol Chem; 1995 Jan; 270(2):720-31. PubMed ID: 7822302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust self-association is a common feature of mammalian visual arrestin-1.
    Kim M; Hanson SM; Vishnivetskiy SA; Song X; Cleghorn WM; Hubbell WL; Gurevich VV
    Biochemistry; 2011 Mar; 50(12):2235-42. PubMed ID: 21288033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.