BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 21824970)

  • 1. Inferring disease and gene set associations with rank coherence in networks.
    Hwang T; Zhang W; Xie M; Liu J; Kuang R
    Bioinformatics; 2011 Oct; 27(19):2692-9. PubMed ID: 21824970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transfer learning across ontologies for phenome-genome association prediction.
    Petegrosso R; Park S; Hwang TH; Kuang R
    Bioinformatics; 2017 Feb; 33(4):529-536. PubMed ID: 27797759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HyDRA: gene prioritization via hybrid distance-score rank aggregation.
    Kim M; Farnoud F; Milenkovic O
    Bioinformatics; 2015 Apr; 31(7):1034-43. PubMed ID: 25411330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide inferring gene-phenotype relationship by walking on the heterogeneous network.
    Li Y; Patra JC
    Bioinformatics; 2010 May; 26(9):1219-24. PubMed ID: 20215462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A knowledge-based approach for predicting gene-disease associations.
    Zhou H; Skolnick J
    Bioinformatics; 2016 Sep; 32(18):2831-8. PubMed ID: 27283949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A random set scoring model for prioritization of disease candidate genes using protein complexes and data-mining of GeneRIF, OMIM and PubMed records.
    Jiang L; Edwards SM; Thomsen B; Workman CT; Guldbrandtsen B; Sørensen P
    BMC Bioinformatics; 2014 Sep; 15(1):315. PubMed ID: 25253562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prioritization of candidate disease genes by enlarging the seed set and fusing information of the network topology and gene expression.
    Zhang SW; Shao DD; Zhang SY; Wang YB
    Mol Biosyst; 2014 Jun; 10(6):1400-8. PubMed ID: 24695957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disease gene prioritization by integrating tissue-specific molecular networks using a robust multi-network model.
    Ni J; Koyuturk M; Tong H; Haines J; Xu R; Zhang X
    BMC Bioinformatics; 2016 Nov; 17(1):453. PubMed ID: 27829360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Syndrome to gene (S2G): in-silico identification of candidate genes for human diseases.
    Gefen A; Cohen R; Birk OS
    Hum Mutat; 2010 Mar; 31(3):229-36. PubMed ID: 20052752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Context-sensitive network-based disease genetics prediction and its implications in drug discovery.
    Chen Y; Xu R
    Bioinformatics; 2017 Apr; 33(7):1031-1039. PubMed ID: 28062449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pinpointing disease genes through phenomic and genomic data fusion.
    Jiang R; Wu M; Li L
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S3. PubMed ID: 25708473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prioritizing disease genes with an improved dual label propagation framework.
    Zhang Y; Liu J; Liu X; Fan X; Hong Y; Wang Y; Huang Y; Xie M
    BMC Bioinformatics; 2018 Feb; 19(1):47. PubMed ID: 29422030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subspace differential coexpression analysis: problem definition and a general approach.
    Fang G; Kuang R; Pandey G; Steinbach M; Myers CL; Kumar V
    Pac Symp Biocomput; 2010; ():145-56. PubMed ID: 19908367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A hypergraph-based learning algorithm for classifying gene expression and arrayCGH data with prior knowledge.
    Tian Z; Hwang T; Kuang R
    Bioinformatics; 2009 Nov; 25(21):2831-8. PubMed ID: 19648139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of functional CNV region networks using a CNV-gene mapping algorithm in a genome-wide scale.
    Park C; Ahn J; Yoon Y; Park S
    Bioinformatics; 2012 Aug; 28(15):2045-51. PubMed ID: 22652832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inductive matrix completion for predicting gene-disease associations.
    Natarajan N; Dhillon IS
    Bioinformatics; 2014 Jun; 30(12):i60-68. PubMed ID: 24932006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved detection of disease-associated variation by sex-specific characterization and prediction of genes required for fertility.
    Ho NR; Huang N; Conrad DF
    Andrology; 2015 Nov; 3(6):1140-9. PubMed ID: 26473511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Comprehensive Evaluation of Disease Phenotype Networks for Gene Prioritization.
    Li J; Lin X; Teng Y; Qi S; Xiao D; Zhang J; Kang Y
    PLoS One; 2016; 11(7):e0159457. PubMed ID: 27415759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integration of Multiple Genomic and Phenotype Data to Infer Novel miRNA-Disease Associations.
    Shi H; Zhang G; Zhou M; Cheng L; Yang H; Wang J; Sun J; Wang Z
    PLoS One; 2016; 11(2):e0148521. PubMed ID: 26849207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene gravity-like algorithm for disease gene prediction based on phenotype-specific network.
    Lin L; Yang T; Fang L; Yang J; Yang F; Zhao J
    BMC Syst Biol; 2017 Dec; 11(1):121. PubMed ID: 29212543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.