These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
399 related articles for article (PubMed ID: 21824986)
1. Competition of different methods for recovering energy from waste. Friege H; Fendel A Waste Manag Res; 2011 Oct; 29(10 Suppl):30-8. PubMed ID: 21824986 [TBL] [Abstract][Full Text] [Related]
2. Energy implications of mechanical and mechanical-biological treatment compared to direct waste-to-energy. Cimpan C; Wenzel H Waste Manag; 2013 Jul; 33(7):1648-58. PubMed ID: 23660494 [TBL] [Abstract][Full Text] [Related]
3. Co-gasification of solid waste and lignite - a case study for Western Macedonia. Koukouzas N; Katsiadakis A; Karlopoulos E; Kakaras E Waste Manag; 2008; 28(7):1263-75. PubMed ID: 17631995 [TBL] [Abstract][Full Text] [Related]
4. Greenhouse gas emissions of different waste treatment options for sector-specific commercial and industrial waste in Germany. Helftewes M; Flamme S; Nelles M Waste Manag Res; 2012 Apr; 30(4):421-31. PubMed ID: 22452957 [TBL] [Abstract][Full Text] [Related]
5. Electricity and combined heat and power from municipal solid waste; theoretically optimal investment decision time and emissions trading implications. Tolis A; Rentizelas A; Aravossis K; Tatsiopoulos I Waste Manag Res; 2010 Nov; 28(11):985-95. PubMed ID: 20516003 [TBL] [Abstract][Full Text] [Related]
6. An integrated appraisal of energy recovery options in the United Kingdom using solid recovered fuel derived from municipal solid waste. Garg A; Smith R; Hill D; Longhurst PJ; Pollard SJ; Simms NJ Waste Manag; 2009 Aug; 29(8):2289-97. PubMed ID: 19443201 [TBL] [Abstract][Full Text] [Related]
7. Solid recovered fuels in the cement industry with special respect to hazardous waste. Thomanetz E Waste Manag Res; 2012 Apr; 30(4):404-12. PubMed ID: 22573713 [TBL] [Abstract][Full Text] [Related]
8. Characterisation of major component leaching and buffering capacity of RDF incineration and gasification bottom ash in relation to reuse or disposal scenarios. Rocca S; van Zomeren A; Costa G; Dijkstra JJ; Comans RN; Lombardi F Waste Manag; 2012 Apr; 32(4):759-68. PubMed ID: 22226920 [TBL] [Abstract][Full Text] [Related]
9. Separation of harmful impurities from refuse derived fuels (RDF) by a fluidized bed. Krüger B; Mrotzek A; Wirtz S Waste Manag; 2014 Feb; 34(2):390-401. PubMed ID: 24252370 [TBL] [Abstract][Full Text] [Related]
10. A review of energy recovery from waste in China. Dorn T; Flamme S; Nelles M Waste Manag Res; 2012 Apr; 30(4):432-41. PubMed ID: 22492261 [TBL] [Abstract][Full Text] [Related]
11. Effects of introducing energy recovery processes to the municipal solid waste management system in Ulaanbaatar, Mongolia. Toshiki K; Giang PQ; Serrona KR; Sekikawa T; Yu JS; Choijil B; Kunikane S J Environ Sci (China); 2015 Feb; 28():178-86. PubMed ID: 25662253 [TBL] [Abstract][Full Text] [Related]
12. Implementation of waste-to-energy options in landfill-dominated countries: Economic evaluation and GHG impact. Aracil C; Haro P; Fuentes-Cano D; Gómez-Barea A Waste Manag; 2018 Jun; 76():443-456. PubMed ID: 29610061 [TBL] [Abstract][Full Text] [Related]
13. Alternative strategies for energy recovery from municipal solid waste Part B: Emission and cost estimates. Consonni S; Giugliano M; Grosso M Waste Manag; 2005; 25(2):137-48. PubMed ID: 15737711 [TBL] [Abstract][Full Text] [Related]
14. Perspectives and limits for cement kilns as a destination for RDF. Genon G; Brizio E Waste Manag; 2008 Nov; 28(11):2375-85. PubMed ID: 18248807 [TBL] [Abstract][Full Text] [Related]
15. Integrated assessment of a new Waste-to-Energy facility in Central Greece in the context of regional perspectives. Perkoulidis G; Papageorgiou A; Karagiannidis A; Kalogirou S Waste Manag; 2010 Jul; 30(7):1395-406. PubMed ID: 20061131 [TBL] [Abstract][Full Text] [Related]
16. An LCA model for waste incineration enhanced with new technologies for metal recovery and application to the case of Switzerland. Boesch ME; Vadenbo C; Saner D; Huter C; Hellweg S Waste Manag; 2014 Feb; 34(2):378-89. PubMed ID: 24315553 [TBL] [Abstract][Full Text] [Related]
17. Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics. Gug J; Cacciola D; Sobkowicz MJ Waste Manag; 2015 Jan; 35():283-92. PubMed ID: 25453320 [TBL] [Abstract][Full Text] [Related]
18. Process aspects in combustion and gasification Waste-to-Energy (WtE) units. Leckner B Waste Manag; 2015 Mar; 37():13-25. PubMed ID: 24846797 [TBL] [Abstract][Full Text] [Related]
19. Assessment of the greenhouse effect impact of technologies used for energy recovery from municipal waste: a case for England. Papageorgiou A; Barton JR; Karagiannidis A J Environ Manage; 2009 Jul; 90(10):2999-3012. PubMed ID: 19482412 [TBL] [Abstract][Full Text] [Related]
20. Energy and greenhouse gas balances for a solid waste incineration plant: a case study. Brinck K; Poulsen TG; Skov H Waste Manag Res; 2011 Oct; 29(10 Suppl):13-9. PubMed ID: 21746759 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]