These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 21825)

  • 21. Biological membranes: regulatory functions.
    Chance B
    Science; 1968 Jun; 160(3833):1261-6. PubMed ID: 4297394
    [No Abstract]   [Full Text] [Related]  

  • 22. On the functional proton current pathway of electron transport phosphorylation. An electrodic view.
    Kell DB
    Biochim Biophys Acta; 1979 Jul; 549(1):55-99. PubMed ID: 38839
    [No Abstract]   [Full Text] [Related]  

  • 23. [Adenosine triphosphate and the hydrogen ion transmembrane potential--2 convertible and transportable forms of energy in the living cell].
    Skulachev VP
    Usp Sovrem Biol; 1977; 84(2):165-75. PubMed ID: 23618
    [No Abstract]   [Full Text] [Related]  

  • 24. Use of an adenosine triphosphate analog, adenylyl imidodiphosphate, to evaluate adenosine triphosphate-dependent reactions in mitochondria.
    Melnick RL; Donohue T
    Arch Biochem Biophys; 1976 Mar; 173(1):231-6. PubMed ID: 176949
    [No Abstract]   [Full Text] [Related]  

  • 25. Phosphorylation of the calcium-transport adenosine triphosphate of cardiac sarcoplasmic reticulum by orthophosphate.
    Winkler F; Suko J
    Eur J Biochem; 1977 Aug; 77(3):611-9. PubMed ID: 19259
    [No Abstract]   [Full Text] [Related]  

  • 26. Action of gramicidin on mitochondia. I. Ion-dependent mitochondrial volume changes energized by adenosine 5'-triphosphate.
    Falcone AB; Hadler HI
    Arch Biochem Biophys; 1968 Mar; 124(1):91-109. PubMed ID: 4232569
    [No Abstract]   [Full Text] [Related]  

  • 27. Mechanism of oxidative phosphorylation.
    Slater EC
    Annu Rev Biochem; 1977; 46():1015-26. PubMed ID: 20036
    [No Abstract]   [Full Text] [Related]  

  • 28. Detection of enzyme-substrate type of interaction during the operation of mitochondrial calcium pump.
    Rossi CS; Alexandre A; Rossi CR
    Adv Cytopharmacol; 1974; 2():171-6. PubMed ID: 4280241
    [No Abstract]   [Full Text] [Related]  

  • 29. Conversion of biomembrane-produced energy into electric form. IV. General discussion.
    Liberman EA; Skulachev VP
    Biochim Biophys Acta; 1970 Aug; 216(1):30-42. PubMed ID: 4250572
    [No Abstract]   [Full Text] [Related]  

  • 30. Proton and electric charge translocation in mitochondrial energy transduction.
    Lehninger AL
    Adv Exp Med Biol; 1982; 148():171-86. PubMed ID: 7124514
    [No Abstract]   [Full Text] [Related]  

  • 31. The nature of electron transfer and energy coupling reactions.
    Chance B
    FEBS Lett; 1972 Jun; 23(1):3-20. PubMed ID: 4343618
    [No Abstract]   [Full Text] [Related]  

  • 32. Mitochondria, chloroplasts, and energy transfer: a discussion.
    Ciba Found Symp; 1975; (31):63-8. PubMed ID: 1041247
    [No Abstract]   [Full Text] [Related]  

  • 33. Non-equilibrium thermodynamics of energy conversion in bioenergetics.
    Rottenberg H
    Biochim Biophys Acta; 1979 Dec; 549(3-4):225-53. PubMed ID: 228718
    [No Abstract]   [Full Text] [Related]  

  • 34. Respiratory control, oxidative phosphorylation, respiration, rate of ATP hydrolysis, and ethylene evolution in subcellular particulate fractions from cotyledons of germinating seedlings.
    Stinson RA; Spencer M
    Can J Biochem; 1970 May; 48(5):541-6. PubMed ID: 4259116
    [No Abstract]   [Full Text] [Related]  

  • 35. Proton-driven phosphorylation reactions in mitochondrial and chloroplast membranes.
    Williams RJ
    FEBS Lett; 1975 May; 53(2):123-5. PubMed ID: 237784
    [No Abstract]   [Full Text] [Related]  

  • 36. The energetics of bacterial active transport.
    Simoni RD; Postma PW
    Annu Rev Biochem; 1975; 44():523-54. PubMed ID: 237462
    [No Abstract]   [Full Text] [Related]  

  • 37. Energy coupling of the -methylgalactoside transport system of Escherichia coli.
    Parnes JR; Boos W
    J Biol Chem; 1973 Jun; 248(12):4429-35. PubMed ID: 4268122
    [No Abstract]   [Full Text] [Related]  

  • 38. Adenine nucleotide translocation of mitochondria. 1. Specificity and control.
    Pfaff E; Klingenberg M
    Eur J Biochem; 1968 Oct; 6(1):66-79. PubMed ID: 5725814
    [No Abstract]   [Full Text] [Related]  

  • 39. A new mechanism by which an H+ concentration gradient drives the synthesis of adenosine triphosphate, pH jump, and adenosine triphosphate synthesis by the Ca2+-dependnet adenosine triphosphatase of sarcoplasmic reticulum.
    de Meis L; Tume RK
    Biochemistry; 1977 Oct; 16(20):4455-63. PubMed ID: 20933
    [No Abstract]   [Full Text] [Related]  

  • 40. On the functional aspects of a preparation of an inner membrane fraction of liver mitochondria. II.
    Strasberg PM; Moore CL
    Biochemistry; 1969 Jun; 8(6):2525-36. PubMed ID: 4240516
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.