These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 21825156)

  • 21. Marine oxygen production and open water supported an active nitrogen cycle during the Marinoan Snowball Earth.
    Johnson BW; Poulton SW; Goldblatt C
    Nat Commun; 2017 Nov; 8(1):1316. PubMed ID: 29105659
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean.
    Coxall HK; Wilson PA; Pälike H; Lear CH; Backman J
    Nature; 2005 Jan; 433(7021):53-7. PubMed ID: 15635407
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Carbon cycling and snowball Earth.
    Goddéris Y; Donnadieu Y
    Nature; 2008 Dec; 456(7224):E8; author reply E9-10. PubMed ID: 19092867
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact-induced initiation of Snowball Earth: A model study.
    Fu M; Abbot DS; Koeberl C; Fedorov A
    Sci Adv; 2024 Feb; 10(6):eadk5489. PubMed ID: 38335287
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cryoconite pans on Snowball Earth: supraglacial oases for Cryogenian eukaryotes?
    Hoffman PF
    Geobiology; 2016 Nov; 14(6):531-542. PubMed ID: 27422766
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Carbonate petrography, kerogen distribution, and carbon and oxygen isotope variations in an early Proterozoic transition from limestone to iron-formation deposition, Transvaal Supergroup, South Africa.
    Beukes NJ; Klein C; Kaufman AJ; Hayes JM
    Econ Geol; 1990; 85(4):663-90. PubMed ID: 11538478
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Episode of intense chemical weathering during the termination of the 635 Ma Marinoan glaciation.
    Huang KJ; Teng FZ; Shen B; Xiao S; Lang X; Ma HR; Fu Y; Peng Y
    Proc Natl Acad Sci U S A; 2016 Dec; 113(52):14904-14909. PubMed ID: 27956606
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Isotopic compositions of carbonates and organic carbon from upper Proterozoic successions in Namibia: stratigraphic variation and the effects of diagenesis and metamorphism.
    Kaufman AJ; Hayes JM; Knoll AH; Germs GJ
    Precambrian Res; 1991; 49():301-27. PubMed ID: 11538647
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Animal survival strategies in Neoproterozoic ice worlds.
    Griffiths HJ; Whittle RJ; Mitchell EG
    Glob Chang Biol; 2023 Jan; 29(1):10-20. PubMed ID: 36220153
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multiple sulfur isotope evidence for massive oceanic sulfate depletion in the aftermath of Snowball Earth.
    Sansjofre P; Cartigny P; Trindade RI; Nogueira AC; Agrinier P; Ader M
    Nat Commun; 2016 Jul; 7():12192. PubMed ID: 27447895
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Eocene/Oligocene ocean de-acidification linked to Antarctic glaciation by sea-level fall.
    Merico A; Tyrrell T; Wilson PA
    Nature; 2008 Apr; 452(7190):979-82. PubMed ID: 18432242
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Atmospheric composition and climate on the early Earth.
    Kasting JF; Howard MT
    Philos Trans R Soc Lond B Biol Sci; 2006 Oct; 361(1474):1733-41; discussion 1741-2. PubMed ID: 17008214
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Production of hydrogen peroxide in the atmosphere of a Snowball Earth and the origin of oxygenic photosynthesis.
    Liang MC; Hartman H; Kopp RE; Kirschvink JL; Yung YL
    Proc Natl Acad Sci U S A; 2006 Dec; 103(50):18896-9. PubMed ID: 17138669
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transient fertilization of a post-Sturtian Snowball ocean margin with dissolved phosphate by clay minerals.
    Fru EC; Bahri JA; Brosson C; Bankole O; Aubineau J; El Albani A; Nederbragt A; Oldroyd A; Skelton A; Lowhagen L; Webster D; Fantong WY; Mills BJW; Alcott LJ; Konhauser KO; Lyons TW
    Nat Commun; 2023 Dec; 14(1):8418. PubMed ID: 38110448
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The late Precambrian greening of the Earth.
    Knauth LP; Kennedy MJ
    Nature; 2009 Aug; 460(7256):728-32. PubMed ID: 19587681
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Extreme winds and waves in the aftermath of a Neoproterozoic glaciation.
    Allen PA; Hoffman PF
    Nature; 2005 Jan; 433(7022):123-7. PubMed ID: 15650730
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Humic substances-part 7: the biogeochemistry of dissolved organic carbon and its interactions with climate change.
    Porcal P; Koprivnjak JF; Molot LA; Dillon PJ
    Environ Sci Pollut Res Int; 2009 Sep; 16(6):714-26. PubMed ID: 19462191
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Subglacial meltwater supported aerobic marine habitats during Snowball Earth.
    Lechte MA; Wallace MW; Hood AVS; Li W; Jiang G; Halverson GP; Asael D; McColl SL; Planavsky NJ
    Proc Natl Acad Sci U S A; 2019 Dec; 116(51):25478-25483. PubMed ID: 31792178
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ferruginous conditions dominated later neoproterozoic deep-water chemistry.
    Canfield DE; Poulton SW; Knoll AH; Narbonne GM; Ross G; Goldberg T; Strauss H
    Science; 2008 Aug; 321(5891):949-52. PubMed ID: 18635761
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Anomalous carbonate precipitates: is the Precambrian the key to the Permian?
    Grotzinger JP; Knoll AH
    Palaios; 1995 Dec; 10(6):578-96. PubMed ID: 11542266
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.