BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 21825161)

  • 1. Fast-folding alpha-helices as reversible strain absorbers in the muscle protein myomesin.
    Berkemeier F; Bertz M; Xiao S; Pinotsis N; Wilmanns M; Gräter F; Rief M
    Proc Natl Acad Sci U S A; 2011 Aug; 108(34):14139-44. PubMed ID: 21825161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular basis of the mechanical hierarchy in myomesin dimers for sarcomere integrity.
    Xiao S; Gräter F
    Biophys J; 2014 Aug; 107(4):965-73. PubMed ID: 25140432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myomesin is a molecular spring with adaptable elasticity.
    Schoenauer R; Bertoncini P; Machaidze G; Aebi U; Perriard JC; Hegner M; Agarkova I
    J Mol Biol; 2005 Jun; 349(2):367-79. PubMed ID: 15890201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular basis of the C-terminal tail-to-tail assembly of the sarcomeric filament protein myomesin.
    Pinotsis N; Lange S; Perriard JC; Svergun DI; Wilmanns M
    EMBO J; 2008 Jan; 27(1):253-64. PubMed ID: 18059477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superhelical architecture of the myosin filament-linking protein myomesin with unusual elastic properties.
    Pinotsis N; Chatziefthimiou SD; Berkemeier F; Beuron F; Mavridis IM; Konarev PV; Svergun DI; Morris E; Rief M; Wilmanns M
    PLoS Biol; 2012 Feb; 10(2):e1001261. PubMed ID: 22347812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mechanical stability of immunoglobulin and fibronectin III domains in the muscle protein titin measured by atomic force microscopy.
    Rief M; Gautel M; Schemmel A; Gaub HE
    Biophys J; 1998 Dec; 75(6):3008-14. PubMed ID: 9826620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulating mechanical stability of heterodimerization between engineered orthogonal helical domains.
    Yu M; Zhao Z; Chen Z; Le S; Yan J
    Nat Commun; 2020 Sep; 11(1):4476. PubMed ID: 32900995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of the mechanical properties of myomesin proteins using dynamic force spectroscopy.
    Bertoncini P; Schoenauer R; Agarkova I; Hegner M; Perriard JC; Güntherodt HJ
    J Mol Biol; 2005 May; 348(5):1127-37. PubMed ID: 15854649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical stability and differentially conserved physical-chemical properties of titin Ig-domains.
    Garcia TI; Oberhauser AF; Braun W
    Proteins; 2009 May; 75(3):706-18. PubMed ID: 19003986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical unfolding of cardiac myosin binding protein-C by atomic force microscopy.
    Karsai A; Kellermayer MS; Harris SP
    Biophys J; 2011 Oct; 101(8):1968-77. PubMed ID: 22004751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Steered molecular dynamics studies of titin I1 domain unfolding.
    Gao M; Wilmanns M; Schulten K
    Biophys J; 2002 Dec; 83(6):3435-45. PubMed ID: 12496110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A kinetic molecular model of the reversible unfolding and refolding of titin under force extension.
    Zhang B; Xu G; Evans JS
    Biophys J; 1999 Sep; 77(3):1306-15. PubMed ID: 10465743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding of Myomesin to Obscurin-Like-1 at the Muscle M-Band Provides a Strategy for Isoform-Specific Mechanical Protection.
    Pernigo S; Fukuzawa A; Beedle AEM; Holt M; Round A; Pandini A; Garcia-Manyes S; Gautel M; Steiner RA
    Structure; 2017 Jan; 25(1):107-120. PubMed ID: 27989621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular basis of passive stress relaxation in human soleus fibers: assessment of the role of immunoglobulin-like domain unfolding.
    Trombitás K; Wu Y; McNabb M; Greaser M; Kellermayer MS; Labeit S; Granzier H
    Biophys J; 2003 Nov; 85(5):3142-53. PubMed ID: 14581214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of equilibrium folding and unfolding transitions of titin immunoglobulin domain under constant forces.
    Chen H; Yuan G; Winardhi RS; Yao M; Popa I; Fernandez JM; Yan J
    J Am Chem Soc; 2015 Mar; 137(10):3540-6. PubMed ID: 25726700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectrin domains lose cooperativity in forced unfolding.
    Randles LG; Rounsevell RW; Clarke J
    Biophys J; 2007 Jan; 92(2):571-7. PubMed ID: 17085494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural evidence for a possible role of reversible disulphide bridge formation in the elasticity of the muscle protein titin.
    Mayans O; Wuerges J; Canela S; Gautel M; Wilmanns M
    Structure; 2001 Apr; 9(4):331-40. PubMed ID: 11525170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unfolding of titin domains studied by molecular dynamics simulations.
    Gao M; Lu H; Schulten K
    J Muscle Res Cell Motil; 2002; 23(5-6):513-21. PubMed ID: 12785101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanoenzymatics of titin kinase.
    Puchner EM; Alexandrovich A; Kho AL; Hensen U; Schäfer LV; Brandmeier B; Gräter F; Grubmüller H; Gaub HE; Gautel M
    Proc Natl Acad Sci U S A; 2008 Sep; 105(36):13385-90. PubMed ID: 18765796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of the M-band myomesin proteins in muscle integrity and cardiac disease.
    Lamber EP; Guicheney P; Pinotsis N
    J Biomed Sci; 2022 Mar; 29(1):18. PubMed ID: 35255917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.