These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 21825162)

  • 1. Evolution of functional nucleic acids in the presence of nonheritable backbone heterogeneity.
    Trevino SG; Zhang N; Elenko MP; Lupták A; Szostak JW
    Proc Natl Acad Sci U S A; 2011 Aug; 108(33):13492-7. PubMed ID: 21825162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Emergence of RNA from the Heterogeneous Products of Prebiotic Nucleotide Synthesis.
    Kim SC; O'Flaherty DK; Giurgiu C; Zhou L; Szostak JW
    J Am Chem Soc; 2021 Mar; 143(9):3267-3279. PubMed ID: 33636080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Primitive genetic polymers.
    Engelhart AE; Hud NV
    Cold Spring Harb Perspect Biol; 2010 Dec; 2(12):a002196. PubMed ID: 20462999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental evidence that GNA and TNA were not sequential polymers in the prebiotic evolution of RNA.
    Yang YW; Zhang S; McCullum EO; Chaput JC
    J Mol Evol; 2007 Sep; 65(3):289-95. PubMed ID: 17828568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Nucleic Acid Sequence That is Catalytically Active in Both RNA and TNA Backbones.
    Wei D; Wang Y; Song D; Zhang Z; Wang J; Chen JY; Li Z; Yu H
    ACS Synth Biol; 2022 Nov; 11(11):3874-3885. PubMed ID: 36278399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthetic genetic polymers capable of heredity and evolution.
    Pinheiro VB; Taylor AI; Cozens C; Abramov M; Renders M; Zhang S; Chaput JC; Wengel J; Peak-Chew SY; McLaughlin SH; Herdewijn P; Holliger P
    Science; 2012 Apr; 336(6079):341-4. PubMed ID: 22517858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical etiology of nucleic acid structure: the pentulofuranosyl oligonucleotide systems: the (1'→3')-β-L-ribulo, (4'→3')-α-L-xylulo, and (1'→3')-α-L-xylulo nucleic acids.
    Stoop M; Meher G; Karri P; Krishnamurthy R
    Chemistry; 2013 Nov; 19(45):15336-45. PubMed ID: 24150882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redesigning the Genetic Polymers of Life.
    Chaput JC
    Acc Chem Res; 2021 Feb; 54(4):1056-1065. PubMed ID: 33533593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and properties of the simplified nucleic acid glycol nucleic acid.
    Meggers E; Zhang L
    Acc Chem Res; 2010 Aug; 43(8):1092-102. PubMed ID: 20405911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origin of life. A simpler nucleic acid.
    Orgel L
    Science; 2000 Nov; 290(5495):1306-7. PubMed ID: 11185405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-Enzymatic RNA Backbone Proofreading through Energy-Dissipative Recycling.
    Mariani A; Sutherland JD
    Angew Chem Int Ed Engl; 2017 Jun; 56(23):6563-6566. PubMed ID: 28467695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Looking for the primordial genetic honeycomb.
    Gallori E; Biondi E; Branciamore S
    Orig Life Evol Biosph; 2006 Dec; 36(5-6):493-9. PubMed ID: 17136428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Xylonucleic acid: synthesis, structure, and orthogonal pairing properties.
    Maiti M; Maiti M; Knies C; Dumbre S; Lescrinier E; Rosemeyer H; Ceulemans A; Herdewijn P
    Nucleic Acids Res; 2015 Sep; 43(15):7189-200. PubMed ID: 26175047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An efficient and faithful in vitro replication system for threose nucleic acid.
    Yu H; Zhang S; Dunn MR; Chaput JC
    J Am Chem Soc; 2013 Mar; 135(9):3583-91. PubMed ID: 23432469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro selection of DNA-based aptamers that exhibit RNA-like conformations using a chimeric oligonucleotide library that contains two different xeno-nucleic acids.
    Hagiwara K; Fujita H; Kasahara Y; Irisawa Y; Obika S; Kuwahara M
    Mol Biosyst; 2015 Jan; 11(1):71-6. PubMed ID: 25325213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Minimal requirements for molecular information transfer.
    Schwartz AW
    Adv Space Res; 1986; 6(11):23-7. PubMed ID: 11537226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Addressing the problems of base pairing and strand cyclization in template-directed synthesis: a case for the utility and necessity of 'molecular midwives' and reversible backbone linkages for the origin of proto-RNA.
    Hud NV; Jain SS; Li X; Lynn DG
    Chem Biodivers; 2007 Apr; 4(4):768-83. PubMed ID: 17443888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Depsipeptide Nucleic Acids: Prebiotic Formation, Oligomerization, and Self-Assembly of a New Proto-Nucleic Acid Candidate.
    Fialho DM; Karunakaran SC; Greeson KW; Martínez I; Schuster GB; Krishnamurthy R; Hud NV
    J Am Chem Soc; 2021 Sep; 143(34):13525-13537. PubMed ID: 34398608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective Prebiotic Synthesis of α-Threofuranosyl Cytidine by Photochemical Anomerization.
    Colville BWF; Powner MW
    Angew Chem Int Ed Engl; 2021 May; 60(19):10526-10530. PubMed ID: 33644959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The proto-Nucleic Acid Builder: a software tool for constructing nucleic acid analogs.
    Alenaizan A; Barnett JL; Hud NV; Sherrill CD; Petrov AS
    Nucleic Acids Res; 2021 Jan; 49(1):79-89. PubMed ID: 33300028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.