These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. 13C spin-lattice relaxation in natural diamond: Zeeman relaxation at 4.7 T and 300 K due to fixed paramagnetic nitrogen defects. Terblanche CJ; Reynhardt EC; van Wyk JA Solid State Nucl Magn Reson; 2001; 20(1-2):1-22. PubMed ID: 11529416 [TBL] [Abstract][Full Text] [Related]
5. 13C spin-lattice relaxation in natural diamond: Zeeman relaxation in fields of 500 to 5000 G at 300 K due to fixed paramagnetic nitrogen defects. Terblanche CJ; Reynhardt EC; Rakitianski SA; Van Wyk JA Solid State Nucl Magn Reson; 2001; 19(3-4):107-29. PubMed ID: 11508805 [TBL] [Abstract][Full Text] [Related]
6. Divacancies in diamond: a stepwise formation mechanism. Slepetz B; Kertesz M Phys Chem Chem Phys; 2014 Jan; 16(4):1515-21. PubMed ID: 24305744 [TBL] [Abstract][Full Text] [Related]
7. Properties of optically active vacancy clusters in type IIa diamond. Mäki JM; Tuomisto F; Kelly CJ; Fisher D; Martineau PM J Phys Condens Matter; 2009 Sep; 21(36):364216. PubMed ID: 21832322 [TBL] [Abstract][Full Text] [Related]
8. A density functional theory study of models for the N3 and OK1 EPR centres in diamond. Etmimi KM; Goss JP; Briddon PR; Gsiea AM J Phys Condens Matter; 2010 Sep; 22(38):385502. PubMed ID: 21386553 [TBL] [Abstract][Full Text] [Related]
9. Defects in electron irradiated boron-doped diamonds investigated by positron annihilation and optical absorption. Dannefaer S; Iakoubovskii K J Phys Condens Matter; 2008 Jun; 20(23):235225. PubMed ID: 21694316 [TBL] [Abstract][Full Text] [Related]
10. Characterization of large vacancy clusters in diamond from a generational algorithm using tight binding density functional theory. Slepetz B; Laszlo I; Gogotsi Y; Hyde-Volpe D; Kertesz M Phys Chem Chem Phys; 2010 Nov; 12(42):14017-22. PubMed ID: 20856969 [TBL] [Abstract][Full Text] [Related]
11. [Raman and PL spectra studies of natural and HPHT synthetic diamonds]. Yang ZJ; Li HZ; Zhou YZ; Wang XY; Luo F Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Dec; 29(12):3304-8. PubMed ID: 20210156 [TBL] [Abstract][Full Text] [Related]
12. A study of vacancy-related defects in (Pb,La)(Zr,Ti)O(3) thin films using positron annihilation. Friessnegg T; Aggarwal S; Nielsen B; Ramesh R; Keeble DJ; Poindexter EH IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(4):916-20. PubMed ID: 18238625 [TBL] [Abstract][Full Text] [Related]
13. One- and two-photon absorption properties of diamond nitrogen-vacancy defect centers: A theoretical study. Lin CK; Wang YH; Chang HC; Hayashi M; Lin SH J Chem Phys; 2008 Sep; 129(12):124714. PubMed ID: 19045055 [TBL] [Abstract][Full Text] [Related]
18. Effect of free volume and temperature on the structural relaxation in polymethylphenylsiloxane: a positron lifetime and pressure-volume-temperature study. Dlubek G; Shaikh MQ; Krause-Rehberg R; Paluch M J Chem Phys; 2007 Jan; 126(2):024906. PubMed ID: 17228972 [TBL] [Abstract][Full Text] [Related]
19. [Spectroscopic studies on transition metal ions in colored diamonds]. Meng YF; Peng MS Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Jul; 24(7):769-74. PubMed ID: 15766067 [TBL] [Abstract][Full Text] [Related]
20. Vacancy defects as compensating centers in Mg-doped GaN. Hautakangas S; Oila J; Alatalo M; Saarinen K; Liszkay L; Seghier D; Gislason HP Phys Rev Lett; 2003 Apr; 90(13):137402. PubMed ID: 12689324 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]