These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 21825465)

  • 1. Peculiarities of ionic transport in Li(1.3)Al(0.15)Y(0.15)Ti(1.7)(PO(4))(3) ceramics.
    Salkus T; Kazakevičius E; Kežionis A; Dindune A; Kanepe Z; Ronis J; Emery J; Boulant A; Bohnke O; Orliukas AF
    J Phys Condens Matter; 2009 May; 21(18):185502. PubMed ID: 21825465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMR investigations of Li(+) ion dynamics in the NASICON ionic conductors [Formula: see text].
    Barré M; Emery J; Florian P; Le Berre F; Crosnier-Lopez MP; Fourquet JL
    J Phys Condens Matter; 2009 Apr; 21(17):175404. PubMed ID: 21825419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast Li ion dynamics in the solid electrolyte Li7 P3 S11 as probed by (6,7) Li NMR spin-lattice relaxation.
    Wohlmuth D; Epp V; Wilkening M
    Chemphyschem; 2015 Aug; 16(12):2582-93. PubMed ID: 26192263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and dynamics of the fast lithium ion conductor "Li7La3Zr2O12".
    Buschmann H; Dölle J; Berendts S; Kuhn A; Bottke P; Wilkening M; Heitjans P; Senyshyn A; Ehrenberg H; Lotnyk A; Duppel V; Kienle L; Janek J
    Phys Chem Chem Phys; 2011 Nov; 13(43):19378-92. PubMed ID: 21986676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NMR study of Li+ ion dynamics in the perovskite Li(3x)La(1/3-x)NbO3.
    Emery J; Bohnke O; Florian P; Marzouk K
    J Phys Chem B; 2005 Nov; 109(44):20680-9. PubMed ID: 16853680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultraslow Li diffusion in spinel-type structured Li4Ti5O12 - a comparison of results from solid state NMR and impedance spectroscopy.
    Wilkening M; Amade R; Iwaniak W; Heitjans P
    Phys Chem Chem Phys; 2007 Mar; 9(10):1239-46. PubMed ID: 17325770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Li mobility in Nasicon-type materials LiM2(PO4)3, M = Ge, Ti, Sn, Zr and Hf, followed by 7Li NMR spectroscopy.
    Arbi K; París MA; Sanz J
    Dalton Trans; 2011 Oct; 40(39):10195-202. PubMed ID: 21897945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cation Miscibility and Lithium Mobility in NASICON Li
    Kahlaoui R; Arbi K; Sobrados I; Jimenez R; Sanz J; Ternane R
    Inorg Chem; 2017 Feb; 56(3):1216-1224. PubMed ID: 28067501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the ion jelly conductivity mechanism.
    Carvalho T; Augusto V; Brás AR; Lourenço NM; Afonso CA; Barreiros S; Correia NT; Vidinha P; Cabrita EJ; Dias CJ; Dionísio M; Roling B
    J Phys Chem B; 2012 Mar; 116(9):2664-76. PubMed ID: 22369088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and electrical characterisation of Li(2)O : TiO(2) : SnO(2) : P(2)O(5) electrolyte glass.
    Abrahams I; Hadzifejzovic E; Dygas JR
    Dalton Trans; 2004 Oct; (19):3129-36. PubMed ID: 15452643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomistic characterisation of Li+ mobility and conductivity in Li(7-x)PS(6-x)Ix argyrodites from molecular dynamics simulations, solid-state NMR, and impedance spectroscopy.
    Pecher O; Kong ST; Goebel T; Nickel V; Weichert K; Reiner C; Deiseroth HJ; Maier J; Haarmann F; Zahn D
    Chemistry; 2010 Jul; 16(28):8347-54. PubMed ID: 20544750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and Li+ dynamics of Sb-doped Li7La3Zr2O12 fast lithium ion conductors.
    Ramakumar S; Satyanarayana L; Manorama SV; Murugan R
    Phys Chem Chem Phys; 2013 Jul; 15(27):11327-38. PubMed ID: 23732926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural factors that enhance lithium mobility in fast-ion Li(1+x)Ti(2-x)Al(x)(PO4)3 (0 ≤ x ≤ 0.4) conductors investigated by neutron diffraction in the temperature range 100-500 K.
    Arbi K; Hoelzel M; Kuhn A; García-Alvarado F; Sanz J
    Inorg Chem; 2013 Aug; 52(16):9290-6. PubMed ID: 23898863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Li-Ion Diffusion in Nanoconfined LiBH
    Zettl R; Gombotz M; Clarkson D; Greenbaum SG; Ngene P; de Jongh PE; Wilkening HMR
    ACS Appl Mater Interfaces; 2020 Aug; 12(34):38570-38583. PubMed ID: 32786241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of fundamental transport properties of Li-excess garnet-type Li(5+2x)La(3)Ta(2-x)Y(x)O(12) (x = 0.25, 0.5 and 0.75) electrolytes using AC impedance and dielectric spectroscopy.
    Baral AK; Narayanan S; Ramezanipour F; Thangadurai V
    Phys Chem Chem Phys; 2014 Jun; 16(23):11356-65. PubMed ID: 24788799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of simultaneous substitution of Y and Ta on the stabilization of cubic phase, microstructure, and Li(+) conductivity of Li7La3Zr2O12 lithium garnet.
    Dhivya L; Murugan R
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17606-15. PubMed ID: 25265573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tailor-made development of fast Li ion conducting garnet-like solid electrolytes.
    Ramzy A; Thangadurai V
    ACS Appl Mater Interfaces; 2010 Feb; 2(2):385-90. PubMed ID: 20356183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal chemistry and stability of "Li7La3Zr2O12" garnet: a fast lithium-ion conductor.
    Geiger CA; Alekseev E; Lazic B; Fisch M; Armbruster T; Langner R; Fechtelkord M; Kim N; Pettke T; Weppner W
    Inorg Chem; 2011 Feb; 50(3):1089-97. PubMed ID: 21188978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nuclear magnetic resonance studies on the rotational and translational motions of ionic liquids composed of 1-ethyl-3-methylimidazolium cation and bis(trifluoromethanesulfonyl)amide and bis(fluorosulfonyl)amide anions and their binary systems including lithium salts.
    Hayamizu K; Tsuzuki S; Seki S; Umebayashi Y
    J Chem Phys; 2011 Aug; 135(8):084505. PubMed ID: 21895197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transformation of proton-conducting Perovskite-type into fluorite-type fast oxide ion electrolytes using a CO2 capture technique and their electrical properties.
    Trobec F; Thangadurai V
    Inorg Chem; 2008 Oct; 47(19):8972-84. PubMed ID: 18707095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.