These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 21825526)

  • 1. Low temperature magnetoresistance measurements on bismuth nanowire arrays.
    Kaiser Ch; Weiss G; Cornelius TW; Toimil-Molares ME; Neumann R
    J Phys Condens Matter; 2009 May; 21(20):205301. PubMed ID: 21825526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observation of superconductivity in single crystalline Bi nanowires.
    Ye Z; Zhang H; Liu H; Wu W; Luo Z
    Nanotechnology; 2008 Feb; 19(8):085709. PubMed ID: 21730740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal properties of bi nanowire arrays with different orientations and diameters.
    Zhu Y; Dou X; Huang X; Li L; Li G
    J Phys Chem B; 2006 Dec; 110(51):26189-93. PubMed ID: 17181275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of superconductivity in electrochemically fabricated AuSn nanowires.
    Kumar N; Tian ML; Wang JG; Watts W; Kindt J; Mallouk TE; Chan MH
    Nanotechnology; 2008 Sep; 19(36):365704. PubMed ID: 21828885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembled Bi interconnections produced by on-film formation of nanowires for in situ device fabrication.
    Ham J; Kang J; Noh JS; Lee W
    Nanotechnology; 2010 Apr; 21(16):165302. PubMed ID: 20348595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resistance, magnetoresistance, and thermopower of zinc nanowire composites.
    Heremans JP; Thrush CM; Morelli DT; Wu MC
    Phys Rev Lett; 2003 Aug; 91(7):076804. PubMed ID: 12935042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning the crystallinity of thermoelectric Bi(2)Te(3) nanowire arrays grown by pulsed electrodeposition.
    Lee J; Farhangfar S; Lee J; Cagnon L; Scholz R; Gösele U; Nielsch K
    Nanotechnology; 2008 Sep; 19(36):365701. PubMed ID: 21828882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural, magnetic, and magnetoresistive properties of electrodeposited Ni5Zn21 alloy nanowires.
    Liu L; Tian H; Xie S; Zhou W; Mu S; Song L; Liu D; Luo S; Zhang Z; Xiang Y; Zhao X; Ma W; Shen J; Li J; Wang C; Wang G
    J Phys Chem B; 2006 Oct; 110(41):20158-65. PubMed ID: 17034190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetically assembled 30 nm diameter nickel nanowire with ferromagnetic electrodes.
    Yoo B; Rheem Y; Beyermann WP; Myung NV
    Nanotechnology; 2006 May; 17(10):2512-7. PubMed ID: 21727497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental evidence of a size-dependent sign change of the Seebeck coefficient of Bi nanowire arrays.
    Wagner MFP; Paulus AS; Sigle W; Brötz J; Trautmann C; Voss KO; Völklein F; Toimil-Molares ME
    Sci Rep; 2023 May; 13(1):8290. PubMed ID: 37217560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ambient surfactantless synthesis, growth mechanism, and size-dependent electrocatalytic behavior of high-quality, single crystalline palladium nanowires.
    Koenigsmann C; Santulli AC; Sutter E; Wong SS
    ACS Nano; 2011 Sep; 5(9):7471-87. PubMed ID: 21875051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anomalous magnetoresistance in nanocrystalline gadolinium at low temperatures.
    Mathew SP; Kaul SN
    J Phys Condens Matter; 2015 Feb; 27(5):056003. PubMed ID: 25604424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical transport properties of single undoped and n-type doped InN nanowires.
    Richter T; Lüth H; Schäpers T; Meijers R; Jeganathan K; Estévez Hernández S; Calarco R; Marso M
    Nanotechnology; 2009 Oct; 20(40):405206. PubMed ID: 19738304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The dependence of the optoelectrical properties of silver nanowire networks on nanowire length and diameter.
    Sorel S; Lyons PE; De S; Dickerson JC; Coleman JN
    Nanotechnology; 2012 May; 23(18):185201. PubMed ID: 22498640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Itinerant helimagnetic single-crystalline MnSi nanowires.
    Seo K; Yoon H; Ryu SW; Lee S; Jo Y; Jung MH; Kim J; Choi YK; Kim B
    ACS Nano; 2010 May; 4(5):2569-76. PubMed ID: 20426410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct observation of the semimetal-to-semiconductor transition of individual single-crystal bismuth nanowires grown by on-film formation of nanowires.
    Lee S; Ham J; Jeon K; Noh JS; Lee W
    Nanotechnology; 2010 Oct; 21(40):405701. PubMed ID: 20823499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetization and magnetoresistance of common alloy wires used in cryogenic instrumentation.
    Abrecht M; Adare A; Ekin JW
    Rev Sci Instrum; 2007 Apr; 78(4):046104. PubMed ID: 17477695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superconductivity in 4-Angstrom carbon nanotubes--a short review.
    Wang Z; Shi W; Lortz R; Sheng P
    Nanoscale; 2012 Jan; 4(1):21-41. PubMed ID: 22105840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Signatures of spin-glass behaviour in PrIr2B2 and heavy fermion behaviour in PrIr2B2C.
    Anupam ; Anand VK; Hossain Z; Adroja DT; Geibel C
    J Phys Condens Matter; 2011 Sep; 23(37):376001. PubMed ID: 21878715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum-interference transport through surface layers of indium-doped ZnO nanowires.
    Chiu SP; Lu JG; Lin JJ
    Nanotechnology; 2013 Jun; 24(24):245203. PubMed ID: 23689960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.