These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 21825587)

  • 1. A first-principles divide-and-conquer approach for electronic structure of large systems and its application to graphene nanoribbons.
    Yao YX; Wang CZ; Zhang GP; Ji M; Ho KM
    J Phys Condens Matter; 2009 Jun; 21(23):235501. PubMed ID: 21825587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electronic structure and transport of a carbon chain between graphene nanoribbon leads.
    Zhang GP; Fang XW; Yao YX; Wang CZ; Ding ZJ; Ho KM
    J Phys Condens Matter; 2011 Jan; 23(2):025302. PubMed ID: 21406839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First-principles electronic transport calculations in finite elongated systems: a divide and conquer approach.
    Hod O; Peralta JE; Scuseria GE
    J Chem Phys; 2006 Sep; 125(11):114704. PubMed ID: 16999498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic and spin transport properties of graphene nanoribbon mediated by metal adatoms: a study by the QUAMBO-NEGF approach.
    Zhang GP; Liu X; Wang CZ; Yao YX; Zhang J; Ho KM
    J Phys Condens Matter; 2013 Mar; 25(10):105302. PubMed ID: 23399804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A divide and conquer real space finite-element Hartree-Fock method.
    Alizadegan R; Hsia KJ; Martinez TJ
    J Chem Phys; 2010 Jan; 132(3):034101. PubMed ID: 20095722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. All-Atom Nonadiabatic Dynamics Simulation of Hybrid Graphene Nanoribbons Based on Wannier Analysis and Machine Learning.
    Wang Z; Dong J; Qiu J; Wang L
    ACS Appl Mater Interfaces; 2022 Jan; ():. PubMed ID: 35100503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic structure of atomic Ti chains on semiconducting graphene nanoribbons: a first-principles study.
    Kan EJ; Xiang HJ; Yang J; Hou JG
    J Chem Phys; 2007 Oct; 127(16):164706. PubMed ID: 17979370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tight-binding density functional theory: an approximate Kohn-Sham DFT scheme.
    Seifert G
    J Phys Chem A; 2007 Jul; 111(26):5609-13. PubMed ID: 17439198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic hyperpolarizability calculations of large systems: the linear-scaling divide-and-conquer approach.
    Kobayashi M; Touma T; Nakai H
    J Chem Phys; 2012 Feb; 136(8):084108. PubMed ID: 22380033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast semiempirical calculations for nuclear magnetic resonance chemical shifts: a divide-and-conquer approach.
    Wang B; Brothers EN; van der Vaart A; Merz KM
    J Chem Phys; 2004 Jun; 120(24):11392-400. PubMed ID: 15268173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchical graphene nanoribbon assemblies feature unique electronic and mechanical properties.
    Xu Z; Buehler MJ
    Nanotechnology; 2009 Sep; 20(37):375704. PubMed ID: 19706941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strain effect on electronic structures of graphene nanoribbons: A first-principles study.
    Sun L; Li Q; Ren H; Su H; Shi QW; Yang J
    J Chem Phys; 2008 Aug; 129(7):074704. PubMed ID: 19044789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct energy functional minimization under orthogonality constraints.
    Weber V; VandeVondele J; Hutter J; Niklasson AM
    J Chem Phys; 2008 Feb; 128(8):084113. PubMed ID: 18315039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical and electronic properties of graphene nanoribbons upon adsorption of ligand-protected aluminum clusters.
    Gomes da Rocha C; Clayborne PA; Koskinen P; Häkkinen H
    Phys Chem Chem Phys; 2014 Feb; 16(8):3558-65. PubMed ID: 24413380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic structure interpolation via atomic orbitals.
    Chen M; Guo GC; He L
    J Phys Condens Matter; 2011 Aug; 23(32):325501. PubMed ID: 21795782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ab initio characterization of graphene nanoribbons and their polymer precursors.
    Peköz R; Feng X; Donadio D
    J Phys Condens Matter; 2012 Mar; 24(10):104023. PubMed ID: 22353922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The method of local increments for the calculation of adsorption energies of atoms and small molecules on solid surfaces. Part I. A single Cu atom on the polar surfaces of ZnO.
    Schmitt I; Fink K; Staemmler V
    Phys Chem Chem Phys; 2009 Dec; 11(47):11196-206. PubMed ID: 20024388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scanning tunneling spectroscopy simulations of poly(3-dodecylthiophene) chains adsorbed on highly oriented pyrolytic graphite.
    Dubois M; Latil S; Scifo L; Grévin B; Rubio A
    J Chem Phys; 2006 Jul; 125(3):34708. PubMed ID: 16863374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.