These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 21825630)

  • 1. Application of nano-EBIC to the characterization of GaAs and InP homojunctions.
    Smaali K; Troyon M
    Nanotechnology; 2008 Apr; 19(15):155706. PubMed ID: 21825630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution scanning near-field EBIC microscopy: application to the characterisation of a shallow ion implanted p+-n silicon junction.
    Smaali K; Fauré J; El Hdiy A; Troyon M
    Ultramicroscopy; 2008 May; 108(6):605-12. PubMed ID: 18053650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local electrical properties of n-AlInAs/i-GaInAs electron channel structures characterized by the probe-electron-beam-induced current technique.
    Watanabe K; Nokuo T; Chen J; Sekiguchi T
    Microscopy (Oxf); 2014 Apr; 63(2):161-6. PubMed ID: 24363442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of electron irradiation on the electronic transport mechanisms during the conductive AFM imaging of InAs/GaAs quantum dots capped with a thin GaAs layer.
    Troyon M; Smaali K
    Nanotechnology; 2008 Jun; 19(25):255709. PubMed ID: 21828669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron beam induced current measurements on single-walled carbon nanotube devices.
    Park JK; Ahn YH; Park JY; Lee S; Park KH
    Nanotechnology; 2010 Mar; 21(11):115706. PubMed ID: 20173234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High aspect ratio AFM Probe processing by helium-ion-beam induced deposition.
    Onishi K; Guo H; Nagano S; Fujita D
    Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i30. PubMed ID: 25359832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The detection of electron-beam-induced current in junctionless semiconductor.
    Tan CC; Ong VK
    Rev Sci Instrum; 2010 Jun; 81(6):064703. PubMed ID: 20590257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive Characterization of Extended Defects in Semiconductor Materials by a Scanning Electron Microscope.
    Hieckmann E; Nacke M; Allardt M; Bodrov Y; Chekhonin P; Skrotzki W; Weber J
    J Vis Exp; 2016 May; (111):. PubMed ID: 27285177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Axial EBIC oscillations at core/shell GaAs/Fe nanowire contacts.
    Yang M; Dvorak D; Leistner K; Damm C; Watkins SP; Kavanagh KL
    Nanotechnology; 2019 Jan; 30(2):025701. PubMed ID: 30378567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of eddy current microscopy for high resolution electrical conductivity imaging using atomic force microscopy.
    Nalladega V; Sathish S; Jata KV; Blodgett MP
    Rev Sci Instrum; 2008 Jul; 79(7):073705. PubMed ID: 18681706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing the structure and function of single biomolecules with scanning transmission electron and atomic force microscopes.
    Müller SA; Müller DJ; Engel A
    Micron; 2011 Feb; 42(2):186-95. PubMed ID: 21087869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-resolution noncontact atomic force microscopy.
    Pérez R; García R; Schwarz U
    Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. STEM electron beam-induced current measurements of organic-inorganic perovskite solar cells.
    Duchamp M; Hu H; Lam YM; Dunin-Borkowski RE; Boothroyd CB
    Ultramicroscopy; 2020 Oct; 217():113047. PubMed ID: 32623204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of batch-microfabricated scanning electrochemical-atomic force microscopy probes.
    Dobson PS; Weaver JM; Holder MN; Unwin PR; Macpherson JV
    Anal Chem; 2005 Jan; 77(2):424-34. PubMed ID: 15649037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Note: A scanning electron microscope sample holder for bidirectional characterization of atomic force microscope probe tips.
    Eisenstein A; Goh MC
    Rev Sci Instrum; 2012 Mar; 83(3):036108. PubMed ID: 22462974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AFM capabilities in characterization of particles and surfaces: from angstroms to microns.
    Starostina N; Brodsky M; Prikhodko S; Hoo CM; Mecartney ML; West P
    J Cosmet Sci; 2008; 59(3):225-32. PubMed ID: 18528590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From EBIC images to qualitative minority carrier diffusion length maps.
    Marcelot O; Magnan P
    Ultramicroscopy; 2019 Feb; 197():23-27. PubMed ID: 30471540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observation of the potential distribution in GaN-based devices by a scanning electron microscope.
    Karumi T; Tanaka S; Tanji T
    Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i22-i23. PubMed ID: 25359816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstruction of atomic force microscopy image by using nanofabricated tip characterizer toward the actual sample surface topography.
    Xu M; Fujita D; Onishi K
    Rev Sci Instrum; 2009 Apr; 80(4):043703. PubMed ID: 19405662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of the tip-sample contact force on the nanostructure size fabricated by local oxidation nanolithography.
    Hu K; Wu S; Huang M; Hu X; Wang Q
    Ultramicroscopy; 2012 Apr; 115():7-13. PubMed ID: 22446199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.