These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 21825646)

  • 1. Influence of liquid phase on nanoparticle-based giant electrorheological fluid.
    Gong X; Wu J; Huang X; Wen W; Sheng P
    Nanotechnology; 2008 Apr; 19(16):165602. PubMed ID: 21825646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrorheological fluids based on glycerol-activated titania gel particles and silicone oil with high yield strength.
    Yin JB; Zhao XP
    J Colloid Interface Sci; 2003 Jan; 257(2):228-36. PubMed ID: 16256474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrorheological suspensions of laponite in oil: rheometry studies.
    Parmar KP; Méheust Y; Schjelderupsen B; Fossum JO
    Langmuir; 2008 Mar; 24(5):1814-22. PubMed ID: 18215081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and electrorheological property of rare earth modified amorphous BaxSr1-xTiO3 gel electrorheological fluid.
    Wu Q; Zhao By; Chen le S; Fang C; Hu Ka
    J Colloid Interface Sci; 2005 Feb; 282(2):493-8. PubMed ID: 15589557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mixing effect of amine and carboxyl groups on electrorheological properties and its analysis by in situ FT-IR under an electric field.
    Ko YG; Lee HJ; Park YS; Woo JW; Choi US
    Phys Chem Chem Phys; 2013 Oct; 15(39):16527-32. PubMed ID: 23945542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved electrorheological effect in polyaniline nanocomposite suspensions.
    Lim YT; Park JH; Park OO
    J Colloid Interface Sci; 2002 Jan; 245(1):198-203. PubMed ID: 16290350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrorheological properties of polyaniline suspensions: field-induced liquid to solid transition and residual gel structure.
    Hiamtup P; Sirivat A; Jamieson AM
    J Colloid Interface Sci; 2006 Mar; 295(1):270-8. PubMed ID: 16168424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of high dielectric constant core on the activity of core-shell structure electrorheological fluid.
    Wu J; Xu G; Cheng Y; Liu F; Guo J; Cui P
    J Colloid Interface Sci; 2012 Jul; 378(1):36-43. PubMed ID: 22579514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance tuning of giant electrorheological fluids by interfacial tailoring.
    Xu Z; Hong Y; Zhang M; Wu J; Wen W
    Soft Matter; 2018 Feb; 14(8):1427-1433. PubMed ID: 29389003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new approach of enhancing the shear stress of electrorheological fluids of montmorillonite nanocomposite by emulsion intercalation of poly-N-methaniline.
    Lu J; Zhao X
    J Colloid Interface Sci; 2004 May; 273(2):651-7. PubMed ID: 15082406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Negative electrorheological behavior in suspensions of inorganic particles.
    Ramos-Tejada MM; Arroyo FJ; Delgado AV
    Langmuir; 2010 Nov; 26(22):16833-40. PubMed ID: 20939556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gelation of chitin and chitosan dispersed suspensions under electric field: effect of degree of deacetylation.
    Ko YG; Shin SS; Choi US; Park YS; Woo JW
    ACS Appl Mater Interfaces; 2011 Apr; 3(4):1289-98. PubMed ID: 21425802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The giant electrorheological effect in suspensions of nanoparticles.
    Wen W; Huang X; Yang S; Lu K; Sheng P
    Nat Mater; 2003 Nov; 2(11):727-30. PubMed ID: 14528296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrorheological phenomena in polyhedral silsesquioxane cage structure/PDMS systems.
    Carl McIntyre E; Joon Oh H; Green PF
    ACS Appl Mater Interfaces; 2010 Apr; 2(4):965-8. PubMed ID: 20384359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silicone-grafted carbonaceous nanotubes with enhanced dispersion stability and electrorheological efficiency.
    Yin J; Wang X; Zhao X
    Nanotechnology; 2015 Feb; 26(6):065704. PubMed ID: 25597819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ sol-gel preparation of polysaccharide/titanium oxide hybrid colloids and their electrorheological effect.
    Zhao XP; Duan X
    J Colloid Interface Sci; 2002 Jul; 251(2):376-80. PubMed ID: 16290743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sedimentation behaviour in electrorheological fluids based on suspensions of zeolite particles in silicone oil.
    Prekas K; Shah T; Soin N; Rangoussi M; Vassiliadis S; Siores E
    J Colloid Interface Sci; 2013 Jul; 401():58-64. PubMed ID: 23623409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced Stimuli-Responsive Electrorheological Property of Poly(ionic liquid)s-Capsulated Polyaniline Particles.
    Zheng C; Dong Y; Liu Y; Zhao X; Yin J
    Polymers (Basel); 2017 Aug; 9(9):. PubMed ID: 30965690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Guest-controlling effects on ER behaviors of beta-cyclodextrin polymer.
    Gao ZW; Zhao XP
    J Colloid Interface Sci; 2005 Sep; 289(1):56-62. PubMed ID: 16009217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Giant electrorheological effect: a microscopic mechanism.
    Chen S; Huang X; van der Vegt NF; Wen W; Sheng P
    Phys Rev Lett; 2010 Jul; 105(4):046001. PubMed ID: 20867864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.