BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 21825663)

  • 1. Local-gated single-walled carbon nanotube field effect transistors assembled by AC dielectrophoresis.
    Stokes P; Khondaker SI
    Nanotechnology; 2008 Apr; 19(17):175202. PubMed ID: 21825663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High yield assembly and electron transport investigation of semiconducting-rich local-gated single-walled carbon nanotube field effect transistors.
    Kormondy KJ; Stokes P; Khondaker SI
    Nanotechnology; 2011 Oct; 22(41):415201. PubMed ID: 21914942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A general approach for high yield fabrication of CMOS-compatible all-semiconducting carbon nanotube field effect transistors.
    Islam MR; Kormondy KJ; Silbar E; Khondaker SI
    Nanotechnology; 2012 Mar; 23(12):125201. PubMed ID: 22398179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An integrated logic circuit assembled on a single carbon nanotube.
    Chen Z; Appenzeller J; Lin YM; Sippel-Oakley J; Rinzler AG; Tang J; Wind SJ; Solomon PM; Avouris P
    Science; 2006 Mar; 311(5768):1735. PubMed ID: 16556834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The fabrication of carbon nanotube field-effect transistors with semiconductors as the source and drain contact materials.
    Xiao Z; Camino FE
    Nanotechnology; 2009 Apr; 20(13):135205. PubMed ID: 19420491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Performance Complementary Transistors and Medium-Scale Integrated Circuits Based on Carbon Nanotube Thin Films.
    Yang Y; Ding L; Han J; Zhang Z; Peng LM
    ACS Nano; 2017 Apr; 11(4):4124-4132. PubMed ID: 28333433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dielectrophoresis-Based Positioning of Carbon Nanotubes for Wafer-Scale Fabrication of Carbon Nanotube Devices.
    Kimbrough J; Williams L; Yuan Q; Xiao Z
    Micromachines (Basel); 2020 Dec; 12(1):. PubMed ID: 33375602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon nanotube thin film transistors based on aerosol methods.
    Zavodchikova MY; Kulmala T; Nasibulin AG; Ermolov V; Franssila S; Grigoras K; Kauppinen EI
    Nanotechnology; 2009 Feb; 20(8):085201. PubMed ID: 19417441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-aligned U-gate carbon nanotube field-effect transistor with extremely small parasitic capacitance and drain-induced barrier lowering.
    Ding L; Wang Z; Pei T; Zhang Z; Wang S; Xu H; Peng F; Li Y; Peng LM
    ACS Nano; 2011 Apr; 5(4):2512-9. PubMed ID: 21370813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A carbon nanotube gated carbon nanotube transistor with 5 ps gate delay.
    Svensson J; Tarakanov Y; Lee DS; Kinaret JM; Park YW; Campbell EE
    Nanotechnology; 2008 Aug; 19(32):325201. PubMed ID: 21828807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon nanotube feedback-gate field-effect transistor: suppressing current leakage and increasing on/off ratio.
    Qiu C; Zhang Z; Zhong D; Si J; Yang Y; Peng LM
    ACS Nano; 2015 Jan; 9(1):969-77. PubMed ID: 25545108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scaling carbon nanotube complementary transistors to 5-nm gate lengths.
    Qiu C; Zhang Z; Xiao M; Yang Y; Zhong D; Peng LM
    Science; 2017 Jan; 355(6322):271-276. PubMed ID: 28104886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Floating-potential dielectrophoresis-controlled fabrication of single-carbon-nanotube transistors and their electrical properties.
    Dong L; Chirayos V; Bush J; Jiao J; Dubin VM; Chebian RV; Ono Y; Conley JF; Ulrich BD
    J Phys Chem B; 2005 Jul; 109(27):13148-53. PubMed ID: 16852637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micropatterned single-walled carbon nanotube electrodes for use in high-performance transistors and inverters.
    Kang W; Kim NH; Lee DY; Chang ST; Cho JH
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9664-70. PubMed ID: 24915751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transformation of unipolar single-walled carbon nanotube field effect transistors to ambipolar induced by polystyrene nanosphere assembly.
    Wei D; Zhang Y; Yang Y; Hasko DG; Chu D; Teo KB; Amaratunga GA; Milne WI
    ACS Nano; 2008 Dec; 2(12):2526-30. PubMed ID: 19206288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DC modeling and the source of flicker noise in passivated carbon nanotube transistors.
    Kim S; Kim S; Janes DB; Mohammadi S; Back J; Shim M
    Nanotechnology; 2010 Sep; 21(38):385203. PubMed ID: 20798468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of field-effect mobility and contact resistance of transistors that use solution-processed single-walled carbon nanotubes.
    Cao Q; Han SJ; Tulevski GS; Franklin AD; Haensch W
    ACS Nano; 2012 Jul; 6(7):6471-7. PubMed ID: 22671996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication and characterization of directly-assembled ZnO nanowire field effect transistors with polymer gate dielectrics.
    Yoon A; Hong WK; Lee T
    J Nanosci Nanotechnol; 2007 Nov; 7(11):4101-5. PubMed ID: 18047128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dielectrophoretically trapping semiconductive carbon nanotube networks.
    Cicoria R; Sun Y
    Nanotechnology; 2008 Dec; 19(48):485303. PubMed ID: 21836297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-performance field effect transistors from solution processed carbon nanotubes.
    Wang H; Luo J; Robertson A; Ito Y; Yan W; Lang V; Zaka M; Schäffel F; Rümmeli MH; Briggs GA; Warner JH
    ACS Nano; 2010 Nov; 4(11):6659-64. PubMed ID: 20958015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.