These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 21825693)
1. Microwave plasma enhanced chemical vapor deposition growth of few-walled carbon nanotubes using catalyst derived from an iron-containing block copolymer precursor. Wang P; Lu J; Zhou O Nanotechnology; 2008 May; 19(18):185605. PubMed ID: 21825693 [TBL] [Abstract][Full Text] [Related]
2. The use of microwave plasma-assisted CVD on nanostructured iron catalysts to grow isolated bundles of carbon nanotubes. Assouar MB; Dossot M; Rizk S; Tiusan C; Bougdira J Nanotechnology; 2010 Feb; 21(6):065708. PubMed ID: 20057030 [TBL] [Abstract][Full Text] [Related]
3. Vertically aligned dense carbon nanotube growth with diameter control by block copolymer micelle catalyst templates. Liu X; Bigioni TP; Xu Y; Cassell AM; Cruden BA J Phys Chem B; 2006 Oct; 110(41):20102-6. PubMed ID: 17034181 [TBL] [Abstract][Full Text] [Related]
4. Fabrication of ordered catalytically active nanoparticles derived from block copolymer micelle templates for controllable synthesis of single-walled carbon nanotubes. Lu J; Yi SS; Kopley T; Qian C; Liu J; Gulari E J Phys Chem B; 2006 Apr; 110(13):6655-60. PubMed ID: 16570969 [TBL] [Abstract][Full Text] [Related]
5. Synthesis of carbon nanotubes on diamond-like carbon by the hot filament plasma-enhanced chemical vapor deposition method. Choi EC; Park YS; Hong B Micron; 2009; 40(5-6):612-6. PubMed ID: 19318258 [TBL] [Abstract][Full Text] [Related]
6. The evolution of carbon nanotubes during their growth by plasma enhanced chemical vapor deposition. Wang H; Ren ZF Nanotechnology; 2011 Oct; 22(40):405601. PubMed ID: 21911923 [TBL] [Abstract][Full Text] [Related]
7. Influence of the catalyst type on the growth of carbon nanotubes via methane chemical vapor deposition. Jodin L; Dupuis AC; Rouvière E; Reiss P J Phys Chem B; 2006 Apr; 110(14):7328-33. PubMed ID: 16599506 [TBL] [Abstract][Full Text] [Related]
8. Growth of carbon nanotubes on cobalt catalyst film using electron cyclotron resonance chemical vapour deposition without thermal heating. Wu WT; Chen KH; Hsu CM Nanotechnology; 2006 Sep; 17(18):4542-7. PubMed ID: 21727575 [TBL] [Abstract][Full Text] [Related]
9. Effects of the Fe-Co interaction on the growth of multiwall carbon nanotubes. Li Z; Dervishi E; Xu Y; Ma X; Saini V; Biris AS; Little R; Biris AR; Lupu D J Chem Phys; 2008 Aug; 129(7):074712. PubMed ID: 19044797 [TBL] [Abstract][Full Text] [Related]
10. Templated growth of carbon nanotubes with controlled diameters using organic-organometallic block copolymers with tailored block lengths. Roerdink M; Pragt J; Korczagin I; Hempenius MA; Stöckli T; Keles Y; Knapp HF; Hinderling C; Vancso GJ J Nanosci Nanotechnol; 2007 Mar; 7(3):1052-8. PubMed ID: 17450874 [TBL] [Abstract][Full Text] [Related]
11. Processes controlling the diameter distribution of single-walled carbon nanotubes during catalytic chemical vapor deposition. Picher M; Anglaret E; Arenal R; Jourdain V ACS Nano; 2011 Mar; 5(3):2118-25. PubMed ID: 21314174 [TBL] [Abstract][Full Text] [Related]
12. A multiscale approach for modeling the early stage growth of single and multiwall carbon nanotubes produced by a metal-catalyzed synthesis process. Elliott JA; Hamm M; Shibuta Y J Chem Phys; 2009 Jan; 130(3):034704. PubMed ID: 19173534 [TBL] [Abstract][Full Text] [Related]
13. Precise control of the number of walls formed during carbon nanotube growth using chemical vapor deposition. Yang HS; Zhang L; Dong XH; Zhu WM; Zhu J; Nelson BJ; Zhang XB Nanotechnology; 2012 Feb; 23(6):065604. PubMed ID: 22248487 [TBL] [Abstract][Full Text] [Related]
14. Growth of metal-free carbon nanotubes on glass substrate with an amorphous carbon catalyst layer. Seo JK; Choi WS; Kim HD; Lee JH; Choi EC; Kim HJ; Hong B J Nanosci Nanotechnol; 2011 Dec; 11(12):11032-6. PubMed ID: 22409050 [TBL] [Abstract][Full Text] [Related]
15. Factors governing the growth mode of carbon nanotubes on carbon-based substrates. Kim KJ; Yu WR; Youk JH; Lee J Phys Chem Chem Phys; 2012 Oct; 14(40):14041-8. PubMed ID: 22990211 [TBL] [Abstract][Full Text] [Related]
16. Growth, new growth, and amplification of carbon nanotubes as a function of catalyst composition. Crouse CA; Maruyama B; Colorado R; Back T; Barron AR J Am Chem Soc; 2008 Jun; 130(25):7946-54. PubMed ID: 18507464 [TBL] [Abstract][Full Text] [Related]
17. Growth of CNTs on Fe-Si catalyst prepared on Si and Al coated Si substrates. Teng FY; Ting JM; Sharma SP; Liao KH Nanotechnology; 2008 Mar; 19(9):095607. PubMed ID: 21817682 [TBL] [Abstract][Full Text] [Related]
18. Generating suspended single-walled carbon nanotubes across a large surface area via patterning self-assembled catalyst-containing block copolymer thin films. Lu J; Kopley T; Dutton D; Liu J; Qian C; Son H; Dresselhaus M; Kong J J Phys Chem B; 2006 Jun; 110(22):10585-9. PubMed ID: 16771301 [TBL] [Abstract][Full Text] [Related]
19. Molecular dynamics study of the catalyst particle size dependence on carbon nanotube growth. Ding F; Rosén A; Bolton K J Chem Phys; 2004 Aug; 121(6):2775-9. PubMed ID: 15281881 [TBL] [Abstract][Full Text] [Related]
20. Controlling the diameter of carbon nanotubes in chemical vapor deposition method by carbon feeding. Lu C; Liu J J Phys Chem B; 2006 Oct; 110(41):20254-7. PubMed ID: 17034203 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]