These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 21825697)

  • 1. Device fabrication with solid-liquid-solid grown silicon nanowires.
    Lee EK; Choi BL; Park YD; Kuk Y; Kwon SY; Kim HJ
    Nanotechnology; 2008 May; 19(18):185701. PubMed ID: 21825697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of single tiers of bridging silicon nanowires for transistor applications using vapor-liquid-solid growth from short silicon-on-insulator sidewalls.
    Nayfeh OM; Antoniadis DA; Boles S; Ho C; Thompson CV
    Small; 2009 Nov; 5(21):2440-4. PubMed ID: 19642093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Signal enhancement in nano-Raman spectroscopy by gold caps on silicon nanowires obtained by vapour-liquid-solid growth.
    Christiansen SH; Becker M; Fahlbusch S; Michler J; Sivakov V; Andrä G; Geiger R
    Nanotechnology; 2007 Jan; 18(3):035503. PubMed ID: 19636122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of the surface migration of gold on the growth of silicon nanowires.
    Hannon JB; Kodambaka S; Ross FM; Tromp RM
    Nature; 2006 Mar; 440(7080):69-71. PubMed ID: 16452928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Patterned growth of silicon oxide nanowires from iron ion implanted SiO2 substrates.
    Choi Y; Johnson JL; Ural A
    Nanotechnology; 2009 Apr; 20(13):135307. PubMed ID: 19420498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The growth of silica and silica-clad nanowires using a solid-state reaction mechanism on Ti, Ni and SiO(2) layers.
    Sharma P; Anguita JV; Stolojan V; Henley SJ; Silva SR
    Nanotechnology; 2010 Jul; 21(29):295603. PubMed ID: 20585171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solid-state diffusion as an efficient doping method for silicon nanowires and nanowire field effect transistors.
    Moselund KE; Ghoneim H; Schmid H; Björk MT; Lörtscher E; Karg S; Signorello G; Webb D; Tschudy M; Beyeler R; Riel H
    Nanotechnology; 2010 Oct; 21(43):435202. PubMed ID: 20890021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monolayer contact doping of silicon surfaces and nanowires using organophosphorus compounds.
    Hazut O; Agarwala A; Subramani T; Waichman S; Yerushalmi R
    J Vis Exp; 2013 Dec; (82):50770. PubMed ID: 24326774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of HCl on the doping and shape control of silicon nanowires.
    Gentile P; Solanki A; Pauc N; Oehler F; Salem B; Rosaz G; Baron T; Den Hertog M; Calvo V
    Nanotechnology; 2012 Jun; 23(21):215702. PubMed ID: 22551776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-scale parallel arrays of silicon nanowires via block copolymer directed self-assembly.
    Farrell RA; Kinahan NT; Hansel S; Stuen KO; Petkov N; Shaw MT; West LE; Djara V; Dunne RJ; Varona OG; Gleeson PG; Jung SJ; Kim HY; Koleśnik MM; Lutz T; Murray CP; Holmes JD; Nealey PF; Duesberg GS; Krstić V; Morris MA
    Nanoscale; 2012 May; 4(10):3228-36. PubMed ID: 22481430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective growth of silica nanowires in silicon catalysed by Pt thin film.
    Sekhar PK; Sambandam SN; Sood DK; Bhansali S
    Nanotechnology; 2006 Sep; 17(18):4606-13. PubMed ID: 21727584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cobalt silicide nanocables grown on Co films: synthesis and physical properties.
    Hsin CL; Yu SY; Wu WW
    Nanotechnology; 2010 Dec; 21(48):485602. PubMed ID: 21060142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ex situ vapor phase boron doping of silicon nanowires using BBr3.
    Doerk GS; Lestari G; Liu F; Carraro C; Maboudian R
    Nanoscale; 2010 Jul; 2(7):1165-70. PubMed ID: 20648344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth of epitaxial silicon nanowires on a Si substrate by a metal-catalyst-free process.
    Ishiyama T; Nakagawa S; Wakamatsu T
    Sci Rep; 2016 Jul; 6():30608. PubMed ID: 27465800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of superhydrophobic silicon oxide nanowire surfaces.
    Coffinier Y; Janel S; Addad A; Blossey R; Gengembre L; Payen E; Boukherroub R
    Langmuir; 2007 Feb; 23(4):1608-11. PubMed ID: 17279635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vertically oriented epitaxial germanium nanowires on silicon substrates using thin germanium buffer layers.
    Jung JH; Yoon HS; Kim YL; Song MS; Kim Y; Chen ZG; Zou J; Choi DY; Kang JH; Joyce HJ; Gao Q; Hoe Tan H; Jagadish C
    Nanotechnology; 2010 Jul; 21(29):295602. PubMed ID: 20585174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and characterization of TiOx nanowires using a novel silicon oxide support layer.
    Lau M; Dai L; Bosnick K; Evoy S
    Nanotechnology; 2009 Jan; 20(2):025602. PubMed ID: 19417271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-assembling silicon nanowires for device applications using the nanochannel-guided "grow-in-place" approach.
    Shan Y; Fonash SJ
    ACS Nano; 2008 Mar; 2(3):429-34. PubMed ID: 19206566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of reliable semiconductor nanowires by controlling crystalline structure.
    Kim S; Lim T; Ju S
    Nanotechnology; 2011 Jul; 22(30):305704. PubMed ID: 21709348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrical breakdown and nanogap formation of indium oxide core/shell heterostructure nanowires.
    Jung M; Song W; Sung Lee J; Kim N; Kim J; Park J; Lee H; Hirakawa K
    Nanotechnology; 2008 Dec; 19(49):495702. PubMed ID: 21730682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.