These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 21825706)

  • 1. The high current-carrying capacity of various carbon nanotube-based buckypapers.
    Park JG; Li S; Liang R; Fan X; Zhang C; Wang B
    Nanotechnology; 2008 May; 19(18):185710. PubMed ID: 21825706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of solvent immersion and evaporation on the electrical conductance of pre-stressed carbon nanotube buckypapers.
    Li S; Park JG; Liang R; Zhang C; Wang B
    Nanotechnology; 2011 Sep; 22(36):365706. PubMed ID: 21841216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A study of Joule heating-induced breakdown of carbon nanotube interconnects.
    Santini CA; Vereecken PM; Volodin A; Groeseneken G; De Gendt S; Haesendonck CV
    Nanotechnology; 2011 Sep; 22(39):395202. PubMed ID: 21891859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The specific heat and effective thermal conductivity of composites containing single-wall and multi-wall carbon nanotubes.
    Pradhan NR; Duan H; Liang J; Iannacchione GS
    Nanotechnology; 2009 Jun; 20(24):245705. PubMed ID: 19471077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Joule Heating Effect of a Foldable and Cuttable Sheet Made of SWCNT/ANF Composite.
    Koo MY; Lee GW
    Nanomaterials (Basel); 2022 Aug; 12(16):. PubMed ID: 36014645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly conductive carbon nanotube buckypapers with improved doping stability via conjugational cross-linking.
    Chen IW; Liang R; Zhao H; Wang B; Zhang C
    Nanotechnology; 2011 Dec; 22(48):485708. PubMed ID: 22072011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sharp burnout failure observed in high current-carrying double-walled carbon nanotube fibers.
    Song L; Toth G; Wei J; Liu Z; Gao W; Ci L; Vajtai R; Endo M; Ajayan PM
    Nanotechnology; 2012 Jan; 23(1):015703. PubMed ID: 22156276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electromagnetic interference shielding properties of carbon nanotube buckypaper composites.
    Park JG; Louis J; Cheng Q; Bao J; Smithyman J; Liang R; Wang B; Zhang C; Brooks JS; Kramer L; Fanchasis P; Dorough D
    Nanotechnology; 2009 Oct; 20(41):415702. PubMed ID: 19755727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radio frequency heating of metallic and semiconducting single-walled carbon nanotubes.
    Anas M; Zhao Y; Saed MA; Ziegler KJ; Green MJ
    Nanoscale; 2019 May; 11(19):9617-9625. PubMed ID: 31065650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of single-walled carbon nanotube thin films enriched with semiconducting nanotubes and their application in photoelectrochemical devices.
    Wei L; Tezuka N; Umeyama T; Imahori H; Chen Y
    Nanoscale; 2011 Apr; 3(4):1845-9. PubMed ID: 21384044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbene-functionalized single-walled carbon nanotubes and their electrical properties.
    Liu C; Zhang Q; Stellacci F; Marzari N; Zheng L; Zhan Z
    Small; 2011 May; 7(9):1257-63. PubMed ID: 21485006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of carbon nanotube sheets and their bilirubin adsorption capacity.
    Ando K; Shinke K; Yamada S; Koyama T; Takai T; Nakaji S; Ogino T
    Colloids Surf B Biointerfaces; 2009 Jul; 71(2):255-9. PubMed ID: 19327971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth of compound single- and multi-walled carbon nanotubes.
    Peng LM; Shi ZJ; Zhang ZL; Ouyang L; Gu ZN; Xue ZQ; Wu QD
    Ultramicroscopy; 2004 Jan; 98(2-4):195-200. PubMed ID: 15046799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patterning of single-walled carbon nanotube films on flexible, transparent plastic substrates.
    Han KN; Li CA; Bui MP; Seong GH
    Langmuir; 2010 Jan; 26(1):598-602. PubMed ID: 19735116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of air oxidation on the surfactant-assisted purification of single-walled carbon nanotubes.
    Ansón-Casaos A; González M; González-Domínguez JM; Martínez MT
    Langmuir; 2011 Jun; 27(11):7192-8. PubMed ID: 21528853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene/single-walled carbon nanotube hybrids: one-step catalytic growth and applications for high-rate Li-S batteries.
    Zhao MQ; Liu XF; Zhang Q; Tian GL; Huang JQ; Zhu W; Wei F
    ACS Nano; 2012 Dec; 6(12):10759-69. PubMed ID: 23153374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of electronic type purity on the lithiation of single-walled carbon nanotubes.
    Jaber-Ansari L; Iddir H; Curtiss LA; Hersam MC
    ACS Nano; 2014 Mar; 8(3):2399-409. PubMed ID: 24506489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decoration of gold nanoparticles on surface-grown single-walled carbon nanotubes for detection of every nanotube by surface-enhanced Raman spectroscopy.
    Chu H; Wang J; Ding L; Yuan D; Zhang Y; Liu J; Li Y
    J Am Chem Soc; 2009 Oct; 131(40):14310-6. PubMed ID: 19764748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon Nanotube Length Governs the Viscoelasticity and Permeability of Buckypaper.
    Shen Z; Röding M; Kröger M; Li Y
    Polymers (Basel); 2017 Mar; 9(4):. PubMed ID: 30970795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.