These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 21825720)
1. A molecular dynamics simulation study on trapping ions in a nanoscale Paul trap. Zhao X; Krstic PS Nanotechnology; 2008 May; 19(19):195702. PubMed ID: 21825720 [TBL] [Abstract][Full Text] [Related]
2. Control Of Screening Of A Charged Particle In Electrolytic Aqueous Paul Trap. Park JH; Krsti PS AIP Conf Proc; 2011; 1336():150-153. PubMed ID: 24839332 [TBL] [Abstract][Full Text] [Related]
3. A long DNA segment in a linear nanoscale Paul trap. Joseph S; Guan W; Reed MA; Krstic PS Nanotechnology; 2010 Jan; 21(1):015103. PubMed ID: 19946172 [TBL] [Abstract][Full Text] [Related]
4. Liquid-Phase Ion Trap for Ion Trapping, Transfer, and Sequential Ejection in Solutions. Hong J; Hou C; Xu Z; He M; Xu W Anal Chem; 2020 Jul; 92(13):9065-9071. PubMed ID: 32441513 [TBL] [Abstract][Full Text] [Related]
5. Stability Diagrams for Paul Ion Traps Driven by Two-Frequencies. Possa GC; Roncaratti LF J Phys Chem A; 2016 Jul; 120(27):4915-22. PubMed ID: 26881458 [TBL] [Abstract][Full Text] [Related]
6. Three-dimensional motional stabilization in the trapping field of an open-ended trapped-ion cell: application to the remeasurement experiment in Fourier transform ion cyclotron resonance mass spectrometry. Vartanian VH; Laude DA Anal Chem; 1996 Apr; 68(8):1321-7. PubMed ID: 8651497 [TBL] [Abstract][Full Text] [Related]
7. The effect of the electric trapping field on state-selective loading of molecules into rf ion traps. Blackburn L; Keller M Sci Rep; 2020 Oct; 10(1):18449. PubMed ID: 33116215 [TBL] [Abstract][Full Text] [Related]
8. Paul-Straubel-Kingdon trap for true zero-point confinement of an individual ion and reservoir. Dehmelt H; Yu N Proc Natl Acad Sci U S A; 1997 Sep; 94(19):10031-3. PubMed ID: 11038575 [TBL] [Abstract][Full Text] [Related]
9. High performance fourier transform ion cyclotron resonance mass spectrometry via a single trap electrode. Vartanian VH; Laude DA J Am Soc Mass Spectrom; 1995 Sep; 6(9):812-21. PubMed ID: 24214424 [TBL] [Abstract][Full Text] [Related]
10. Paul trapping of charged particles in aqueous solution. Guan W; Joseph S; Park JH; Krstic PS; Reed MA Proc Natl Acad Sci U S A; 2011 Jun; 108(23):9326-30. PubMed ID: 21606331 [TBL] [Abstract][Full Text] [Related]
11. Computer simulation of the gap-tripole ion trap with linear injection, 3D ion accumulation, and versatile packet ejection. Salazar GA; Masujima T J Am Soc Mass Spectrom; 2008 Sep; 19(9):1367-74. PubMed ID: 18635376 [TBL] [Abstract][Full Text] [Related]
12. Surface-induced dissociation of molecular ions in a quadrupole ion trap mass spectrometer. Lammert SA; Cooks RG J Am Soc Mass Spectrom; 1991 Dec; 2(6):487-91. PubMed ID: 24242771 [TBL] [Abstract][Full Text] [Related]
13. Mass-selective removal of ions from Paul traps using parametric excitation. Schmidt J; Hönig D; Weckesser P; Thielemann F; Schaetz T; Karpa L Appl Phys B; 2020; 126(11):176. PubMed ID: 33088025 [TBL] [Abstract][Full Text] [Related]
14. A highly miniaturized vacuum package for a trapped ion atomic clock. Schwindt PD; Jau YY; Partner H; Casias A; Wagner AR; Moorman M; Manginell RP; Kellogg JR; Prestage JD Rev Sci Instrum; 2016 May; 87(5):053112. PubMed ID: 27250397 [TBL] [Abstract][Full Text] [Related]
15. Off-resonance energy absorption in a linear Paul trap due to mass selective resonant quenching. Sivarajah I; Goodman DS; Wells JE; Narducci FA; Smith WW Rev Sci Instrum; 2013 Nov; 84(11):113101. PubMed ID: 24289382 [TBL] [Abstract][Full Text] [Related]
16. Simulations of ion trapping in a micrometer-sized cylindrical ion trap. Austin DE; Cruz D; Blain MG J Am Soc Mass Spectrom; 2006 Mar; 17(3):430-41. PubMed ID: 16442302 [TBL] [Abstract][Full Text] [Related]
17. Paul trap mass analyzer consisting of opposing microfabricated electrode plates. Zhang Z; Peng Y; Hansen BJ; Miller IW; Wang M; Lee ML; Hawkins AR; Austin DE Anal Chem; 2009 Jul; 81(13):5241-8. PubMed ID: 19522534 [TBL] [Abstract][Full Text] [Related]
18. A compact radiofrequency drive based on interdependent resonant circuits for precise control of ion traps. Detti A; De Pas M; Duca L; Perego E; Sias C Rev Sci Instrum; 2019 Feb; 90(2):023201. PubMed ID: 30831687 [TBL] [Abstract][Full Text] [Related]
19. Design and characterization of a cryogenic linear Paul ion trap for ion-neutral reaction studies. Miossec C; Hejduk M; Pandey R; Coughlan NJA; Heazlewood BR Rev Sci Instrum; 2022 Mar; 93(3):033201. PubMed ID: 35364974 [TBL] [Abstract][Full Text] [Related]
20. A cryogenic radio-frequency ion trap for quantum logic spectroscopy of highly charged ions. Leopold T; King SA; Micke P; Bautista-Salvador A; Heip JC; Ospelkaus C; Crespo López-Urrutia JR; Schmidt PO Rev Sci Instrum; 2019 Jul; 90(7):073201. PubMed ID: 31370455 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]