These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 21825725)

  • 1. Slip-enhanced electrokinetic energy conversion in nanofluidic channels.
    Ren Y; Stein D
    Nanotechnology; 2008 May; 19(19):195707. PubMed ID: 21825725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy transfer through streaming effects in time-periodic pressure-driven nanochannel flows with interfacial slip.
    Goswami P; Chakraborty S
    Langmuir; 2010 Jan; 26(1):581-90. PubMed ID: 19894749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of surface charge and boundary slip on time-periodic pressure-driven flow and electrokinetic energy conversion in a nanotube.
    Buren M; Jian Y; Zhao Y; Chang L; Liu Q
    Beilstein J Nanotechnol; 2019; 10():1628-1635. PubMed ID: 31467824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of fluid slippage on pressure-driven electrokinetic energy conversion in conical nanochannels.
    Qian F; Guo P; Zhang W; Wang Q; Zhao C
    Electrophoresis; 2022 Nov; 43(21-22):2062-2073. PubMed ID: 35621205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asymmetric Electrokinetic Energy Conversion in Slip Conical Nanopores.
    Chang CC
    Nanomaterials (Basel); 2022 Mar; 12(7):. PubMed ID: 35407218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slip Effects on Ionic Current of Viscoelectric Electroviscous Flows through Different Length Nanofluidic Channels.
    Sen T; Barisik M
    Langmuir; 2020 Aug; 36(31):9191-9203. PubMed ID: 32635731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Slip flow in graphene nanochannels.
    Kannam SK; Todd BD; Hansen JS; Daivis PJ
    J Chem Phys; 2011 Oct; 135(14):144701. PubMed ID: 22010725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A method to determine zeta potential and Navier slip coefficient of microchannels.
    Park HM
    J Colloid Interface Sci; 2010 Jul; 347(1):132-41. PubMed ID: 20362996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrokinetic energy conversion efficiency in nanofluidic channels.
    van der Heyden FH; Bonthuis DJ; Stein D; Meyer C; Dekker C
    Nano Lett; 2006 Oct; 6(10):2232-7. PubMed ID: 17034089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Stern layer conductance on electrokinetic energy conversion in nanofluidic channels.
    Davidson C; Xuan X
    Electrophoresis; 2008 Mar; 29(5):1125-30. PubMed ID: 18246575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A hybrid theoretical method for predicting electrokinetic energy conversion in nanochannels.
    Hu X; Nan Y; Kong X; Lu D; Wu J
    Phys Chem Chem Phys; 2020 Apr; 22(16):9110-9116. PubMed ID: 32301460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aqueous electrolytes near hydrophobic surfaces: dynamic effects of ion specificity and hydrodynamic slip.
    Huang DM; Cottin-Bizonne C; Ybert C; Bocquet L
    Langmuir; 2008 Feb; 24(4):1442-50. PubMed ID: 18052395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analytical and numerical study of the electro-osmotic annular flow of viscoelastic fluids.
    Ferrás LL; Afonso AM; Alves MA; Nóbrega JM; Pinho FT
    J Colloid Interface Sci; 2014 Apr; 420():152-7. PubMed ID: 24559713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrokinetic energy conversion in nanofluidic channels: addressing the loose ends in nanodevice efficiency.
    Bakli C; Chakraborty S
    Electrophoresis; 2015 Mar; 36(5):675-81. PubMed ID: 25258090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Slip length of water on graphene: limitations of non-equilibrium molecular dynamics simulations.
    Kannam SK; Todd BD; Hansen JS; Daivis PJ
    J Chem Phys; 2012 Jan; 136(2):024705. PubMed ID: 22260608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anisotropic particle in viscous shear flow: Navier slip, reciprocal symmetry, and Jeffery orbit.
    Zhang J; Xu X; Qian T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033016. PubMed ID: 25871211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maximum efficiency of the electro-osmotic pump.
    Xu Z; Miao J; Wang N; Wen W; Sheng P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 2):066303. PubMed ID: 21797473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electro-osmosis at inhomogeneous charged surfaces: hydrodynamic versus electric friction.
    Kim YW; Netz RR
    J Chem Phys; 2006 Mar; 124(11):114709. PubMed ID: 16555912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrokinetic secondary-flow behavior in a curved microchannel under dissimilar surface conditions.
    Chun MS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 2):036312. PubMed ID: 21517592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boundary slip and wetting properties of interfaces: correlation of the contact angle with the slip length.
    Voronov RS; Papavassiliou DV; Lee LL
    J Chem Phys; 2006 May; 124(20):204701. PubMed ID: 16774358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.