These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 21825725)

  • 21. Boundary streaming with Navier boundary condition.
    Xie JH; Vanneste J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063010. PubMed ID: 25019882
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Theory and simulations of water flow through carbon nanotubes: prospects and pitfalls.
    Bonthuis DJ; Rinne KF; Falk K; Nadir Kaplan C; Horinek D; Nihat Berker A; Bocquet L; Netz RR
    J Phys Condens Matter; 2011 May; 23(18):184110. PubMed ID: 21508478
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extension of the Helmholtz-Smoluchowski velocity to the hydrophobic microchannels with velocity slip.
    Park HM; Kim TW
    Lab Chip; 2009 Jan; 9(2):291-6. PubMed ID: 19107287
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The apparent hydrodynamic slip of polymer solutions and its implications in electrokinetics.
    Berli CL
    Electrophoresis; 2013 Mar; 34(5):622-30. PubMed ID: 23254943
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Apparent slip due to the motion of suspended particles in flows of electrolyte solutions.
    Lauga E
    Langmuir; 2004 Sep; 20(20):8924-30. PubMed ID: 15379528
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electro-osmotic flow over a charged superhydrophobic surface.
    Zhao H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066314. PubMed ID: 20866529
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unsteady Pressure-Driven Electrokinetic Slip Flow and Heat Transfer of Power-Law Fluid through a Microannulus.
    Deng S; Bian R; Liang J
    Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838071
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydrodynamic slip boundary condition at chemically patterned surfaces: a continuum deduction from molecular dynamics.
    Qian T; Wang XP; Sheng P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 1):022501. PubMed ID: 16196615
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrokinetic energy conversion in microchannels using polymer solutions.
    Berli CL
    J Colloid Interface Sci; 2010 Sep; 349(1):446-8. PubMed ID: 20621815
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Liquid slip on a nanostructured surface.
    Lee DJ; Cho KY; Jang S; Song YS; Youn JR
    Langmuir; 2012 Jul; 28(28):10488-94. PubMed ID: 22717057
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modeling of electrokinetic transport in silica nanofluidic channels.
    Wang M; Kang Q; Ben-Naim E
    Anal Chim Acta; 2010 Apr; 664(2):158-64. PubMed ID: 20363398
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydrodynamic slip length as a surface property.
    Ramos-Alvarado B; Kumar S; Peterson GP
    Phys Rev E; 2016 Feb; 93(2):023101. PubMed ID: 26986407
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Boundary slip study on hydrophilic, hydrophobic, and superhydrophobic surfaces with dynamic atomic force microscopy.
    Bhushan B; Wang Y; Maali A
    Langmuir; 2009 Jul; 25(14):8117-21. PubMed ID: 19402684
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Short channel effects on electrokinetic energy conversion in solid-state nanopores.
    Zhang Y; He Y; Tsutsui M; Miao XS; Taniguchi M
    Sci Rep; 2017 Apr; 7():46661. PubMed ID: 28440281
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transverse flow in thin superhydrophobic channels.
    Feuillebois F; Bazant MZ; Vinogradova OI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 2):055301. PubMed ID: 21230537
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrokinetic phenomena in a dilute suspension of spherical solid colloidal particles with a hydrodynamically slipping surface in an aqueous electrolyte solution.
    Ohshima H
    Adv Colloid Interface Sci; 2019 Oct; 272():101996. PubMed ID: 31421456
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Slip divergence of water flow in graphene nanochannels: the role of chirality.
    Wagemann E; Oyarzua E; Walther JH; Zambrano HA
    Phys Chem Chem Phys; 2017 Mar; 19(13):8646-8652. PubMed ID: 28195288
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular diffusion and slip boundary conditions at smooth surfaces with periodic and random nanoscale textures.
    Priezjev NV
    J Chem Phys; 2011 Nov; 135(20):204704. PubMed ID: 22128949
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interfacial transport with mobile surface charges and consequences for ionic transport in carbon nanotubes.
    Mouterde T; Bocquet L
    Eur Phys J E Soft Matter; 2018 Dec; 41(12):148. PubMed ID: 30564898
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Resolving Anomalies in Predicting Electrokinetic Energy Conversion Efficiencies of Nanofluidic Devices.
    Majumder S; Dhar J; Chakraborty S
    Sci Rep; 2015 Oct; 5():14725. PubMed ID: 26437925
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.