These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 21825789)
21. A study on the mechanical and electrical reliability of individual carbon nanotube field emission cathodes. Ribaya BP; Leung J; Brown P; Rahman M; Nguyen CV Nanotechnology; 2008 May; 19(18):185201. PubMed ID: 21825685 [TBL] [Abstract][Full Text] [Related]
22. Liquid crystal display response time estimation for medical applications. Elze T; Tanner TG Med Phys; 2009 Nov; 36(11):4984-90. PubMed ID: 19994507 [TBL] [Abstract][Full Text] [Related]
23. Deterministic fabrication of carbon nanotube probes using the dielectrophoretic assembly and electrical detection. Lim D; Kwon S; Lee J; Shim HC; Lee HW; Kim S Rev Sci Instrum; 2009 Oct; 80(10):105103. PubMed ID: 19895087 [TBL] [Abstract][Full Text] [Related]
24. The fabrication of carbon-nanotube-coated electrodes and a field-emission-based luminescent device. Agarwal S; Yamini Sarada B; Kar KK Nanotechnology; 2010 Feb; 21(6):065601. PubMed ID: 20057034 [TBL] [Abstract][Full Text] [Related]
25. Geometry dependence of the electrostatic and thermal response of a carbon nanotube during field emission. Sanchez JA; Mengüç MP Nanotechnology; 2008 Feb; 19(7):075702. PubMed ID: 21817650 [TBL] [Abstract][Full Text] [Related]
26. Vapor-solid growth of few-layer graphene using radio frequency sputtering deposition and its application on field emission. Deng JH; Zheng RT; Zhao Y; Cheng GA ACS Nano; 2012 May; 6(5):3727-33. PubMed ID: 22482928 [TBL] [Abstract][Full Text] [Related]
27. Effective luminance deterioration of medical liquid crystal displays in clinical use. Takahashi K; Awamoto S; Takarabe S; Ogawa K; Nakamura Y Radiol Phys Technol; 2017 Sep; 10(3):382-386. PubMed ID: 28466128 [TBL] [Abstract][Full Text] [Related]
28. Tailoring the light distribution of liquid crystal display with freeform engineered diffuser. Zhu R; Hong Q; Gao Y; Luo Z; Wu ST; Li MC; Lee SL; Tsai WC Opt Express; 2015 Jun; 23(11):14070-84. PubMed ID: 26072776 [TBL] [Abstract][Full Text] [Related]
29. Evaluating the environmental impacts of a nano-enhanced field emission display using life cycle assessment: a screening-level study. Upadhyayula VK; Meyer DE; Curran MA; Gonzalez MA Environ Sci Technol; 2014 Jan; 48(2):1194-205. PubMed ID: 24328392 [TBL] [Abstract][Full Text] [Related]
30. High-Uniformity Planar Mini-Chip-Scale Packaged LEDs with Quantum Dot Converter for White Light Source. Chen LC; Tien CH; Chen DF; Ye ZT; Kuo HC Nanoscale Res Lett; 2019 May; 14(1):182. PubMed ID: 31144059 [TBL] [Abstract][Full Text] [Related]
31. Nanowelding of carbon nanotube-metal contacts: an effective way to control the Schottky barrier and performance of carbon nanotube based field effect transistors. Nurbawono A; Zhang A; Cai Y; Wu Y; Feng YP; Zhang C J Chem Phys; 2012 May; 136(17):174704. PubMed ID: 22583262 [TBL] [Abstract][Full Text] [Related]
32. Color breakup suppression based on global dimming for field sequential color displays using edge information in images. Lin FC; Qin Z; Teng KT; Huang YP Opt Express; 2019 Feb; 27(3):2335-2343. PubMed ID: 30732272 [TBL] [Abstract][Full Text] [Related]
33. Analyzing small suprathreshold differences of LCD-generated colors. Urban P; Fedutina M; Lissner I J Opt Soc Am A Opt Image Sci Vis; 2011 Jul; 28(7):1500-12. PubMed ID: 21734751 [TBL] [Abstract][Full Text] [Related]
34. Gas phase synthesis and field emission properties of 3D aligned double walled carbon nanotube/anatase hybrid architectures. Joshi RK; Engstler J; Navitski A; Sakharuk V; Müller G; Schneider JJ Nanoscale; 2011 Aug; 3(8):3258-64. PubMed ID: 21716996 [TBL] [Abstract][Full Text] [Related]
35. Electron field emission characteristics and field evaporation of a single carbon nanotube. Wang MS; Peng LM; Wang JY; Chen Q J Phys Chem B; 2005 Jan; 109(1):110-3. PubMed ID: 16850991 [TBL] [Abstract][Full Text] [Related]
36. Eliminating hotspots in a multi-chip LED array direct backlight system with optimal patterned reflectors for uniform illuminanceand minimal system thickness. Kim B; Kim J; Ohm WS; Kang S Opt Express; 2010 Apr; 18(8):8595-604. PubMed ID: 20588704 [TBL] [Abstract][Full Text] [Related]
37. Secondary lens with hybrid structure of freeform surface and microstructure for ultra-thin backlight unit. Feng Q; Sun Q; Li K; Wang Z; Lv G Appl Opt; 2023 Aug; 62(23):6081-6086. PubMed ID: 37707074 [TBL] [Abstract][Full Text] [Related]
38. The fabrication of carbon nanotube probes utilizing ultra-high vacuum transmission electron microscopy. Chin SC; Chang YC; Chang CS Nanotechnology; 2009 Jul; 20(28):285307. PubMed ID: 19546489 [TBL] [Abstract][Full Text] [Related]
39. High-capacity MIMO visible light communication integrated into mini-LED LCDs. Zhao Z; Qiu Y; Zou G; Liu Y; Weng J; Yang BR; Qin Z Opt Express; 2024 Apr; 32(8):14876-14891. PubMed ID: 38859422 [TBL] [Abstract][Full Text] [Related]
40. Image quality performance of liquid crystal display systems: influence of display resolution, magnification and window settings on contrast-detail detection. Bacher K; Smeets P; De Hauwere A; Voet T; Duyck P; Verstraete K; Thierens H Eur J Radiol; 2006 Jun; 58(3):471-9. PubMed ID: 16442770 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]