These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 21825812)

  • 41. Anomalous optical and magnetic behavior of multi-phase Mn doped Zn(2)SiO(4) nanowires: a new class of dilute magnetic semiconductors.
    Hafeez M; Ali A; Manzoor S; Bhatti AS
    Nanoscale; 2014 Dec; 6(24):14845-55. PubMed ID: 25360862
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Influence of supersaturation and spontaneous catalyst formation on the growth of PbS wires: toward a unified understanding of growth modes.
    Nichols PL; Sun M; Ning CZ
    ACS Nano; 2011 Nov; 5(11):8730-8. PubMed ID: 21981350
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The temperature-controlled growth of In2O3 nanowires, nanotowers and ultra-long layered nanorods.
    Singh N; Zhang T; Lee PS
    Nanotechnology; 2009 May; 20(19):195605. PubMed ID: 19420644
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Morphology controlling method for amorphous silica nanoparticles and jellyfish-like nanowires and their luminescence properties.
    Liu H; Huang Z; Huang J; Xu S; Fang M; Liu YG; Wu X; Zhang S
    Sci Rep; 2016 Mar; 6():22459. PubMed ID: 26940294
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Formation of single tiers of bridging silicon nanowires for transistor applications using vapor-liquid-solid growth from short silicon-on-insulator sidewalls.
    Nayfeh OM; Antoniadis DA; Boles S; Ho C; Thompson CV
    Small; 2009 Nov; 5(21):2440-4. PubMed ID: 19642093
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Photoluminescence properties of InAs nanowires grown on GaAs and Si substrates.
    Sun MH; Leong ES; Chin AH; Ning CZ; Cirlin GE; Samsonenko YB; Dubrovskii VG; Chuang L; Chang-Hasnain C
    Nanotechnology; 2010 Aug; 21(33):335705. PubMed ID: 20657047
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Propagation of amorphous oxide nanowires
    Shakthivel D; Navaraj WT; Champet S; Gregory DH; Dahiya RS
    Nanoscale Adv; 2019 Sep; 1(9):3568-3578. PubMed ID: 36133567
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rapid thermal annealing effects on tin oxide nanowires prepared by vapor-liquid-solid technique.
    Kar A; Yang J; Dutta M; Stroscio MA; Kumari J; Meyyappan M
    Nanotechnology; 2009 Feb; 20(6):065704. PubMed ID: 19417398
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Gold-catalyzed low-temperature growth of cadmium oxide nanowires by vapor transport.
    Kuo TJ; Huang MH
    J Phys Chem B; 2006 Jul; 110(28):13717-21. PubMed ID: 16836315
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Gold nanowires fabricated by immersion plating.
    Hsu CC; Shen FY; Huang FS
    Nanotechnology; 2008 May; 19(19):195302. PubMed ID: 21825711
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Controlling the growth of Si/Ge nanowires and heterojunctions using silver-gold alloy catalysts.
    Chou YC; Wen CY; Reuter MC; Su D; Stach EA; Ross FM
    ACS Nano; 2012 Jul; 6(7):6407-15. PubMed ID: 22708581
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fabrication of silicon oxide nanowires embedded with Au nanoparticle or Au nanowire: its use as template to hollow silica nanotube.
    Chung SY; Chun JH; Kim DE
    J Nanosci Nanotechnol; 2008 Oct; 8(10):5555-7. PubMed ID: 19198497
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Synthesis and characterization of amorphous SiO2 nanowires derived from a polymeric precursor.
    Li J; Zhang Z; Luo Y; Guo L; Xie Z
    J Nanosci Nanotechnol; 2008 Feb; 8(2):997-1002. PubMed ID: 18464440
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synthesis and Photoluminescence Property of Silicon Carbide Nanowires Via Carbothermic Reduction of Silica.
    Luo X; Ma W; Zhou Y; Liu D; Yang B; Dai Y
    Nanoscale Res Lett; 2009 Nov; 5(1):252-256. PubMed ID: 20651911
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The morphology of silicon nanowires grown in the presence of trimethylaluminium.
    Oehler F; Gentile P; Baron T; Hertog MD; Rouvière J; Ferret P
    Nanotechnology; 2009 Jun; 20(24):245602. PubMed ID: 19471089
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Self-organized hierarchical ZnS/SiO(2) nanowire heterostructures.
    Shen G; Bando Y; Tang C; Golberg D
    J Phys Chem B; 2006 Apr; 110(14):7199-202. PubMed ID: 16599486
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fluorescence signals of core-shell quantum dots enhanced by single crystalline gold caps on silicon nanowires.
    Christiansen SH; Chou JW; Becker M; Sivakov V; Ehrhold K; Berger A; Chou WC; Chuu DS; Gösele U
    Nanotechnology; 2009 Apr; 20(16):165301. PubMed ID: 19420566
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The effects of substrates on the geometry and optical properties of aluminum nitride nanowires.
    Gharavi MA; Haratizadeh H; Kitai A; Moafi A
    J Nanosci Nanotechnol; 2012 Dec; 12(12):9208-12. PubMed ID: 23447979
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Growth of germanium nanowires on silicon(111) substrates by molecular beam epitaxy.
    Dau MT; Petit M; Watanabe A; Michez L; Mendez SO; Baghdad R; Le Thanh V; Coudreau C
    J Nanosci Nanotechnol; 2011 Oct; 11(10):9292-5. PubMed ID: 22400339
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sn-catalyzed growth of MgO nanowires.
    Kim HW; Shim SH; Lee JW
    J Nanosci Nanotechnol; 2007 Dec; 7(12):4434-8. PubMed ID: 18283824
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.