These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 21825985)
1. Muscular dystrophies due to glycosylation defects: diagnosis and therapeutic strategies. Muntoni F; Torelli S; Wells DJ; Brown SC Curr Opin Neurol; 2011 Oct; 24(5):437-42. PubMed ID: 21825985 [TBL] [Abstract][Full Text] [Related]
2. Glycosylation with ribitol-phosphate in mammals: New insights into the O-mannosyl glycan. Manya H; Endo T Biochim Biophys Acta Gen Subj; 2017 Oct; 1861(10):2462-2472. PubMed ID: 28711406 [TBL] [Abstract][Full Text] [Related]
3. Residual laminin-binding activity and enhanced dystroglycan glycosylation by LARGE in novel model mice to dystroglycanopathy. Kanagawa M; Nishimoto A; Chiyonobu T; Takeda S; Miyagoe-Suzuki Y; Wang F; Fujikake N; Taniguchi M; Lu Z; Tachikawa M; Nagai Y; Tashiro F; Miyazaki J; Tajima Y; Takeda S; Endo T; Kobayashi K; Campbell KP; Toda T Hum Mol Genet; 2009 Feb; 18(4):621-31. PubMed ID: 19017726 [TBL] [Abstract][Full Text] [Related]
4. ISPD gene mutations are a common cause of congenital and limb-girdle muscular dystrophies. Cirak S; Foley AR; Herrmann R; Willer T; Yau S; Stevens E; Torelli S; Brodd L; Kamynina A; Vondracek P; Roper H; Longman C; Korinthenberg R; Marrosu G; Nürnberg P; ; Michele DE; Plagnol V; Hurles M; Moore SA; Sewry CA; Campbell KP; Voit T; Muntoni F Brain; 2013 Jan; 136(Pt 1):269-81. PubMed ID: 23288328 [TBL] [Abstract][Full Text] [Related]
5. Abnormal glycosylation of dystroglycan in human genetic disease. Hewitt JE Biochim Biophys Acta; 2009 Sep; 1792(9):853-61. PubMed ID: 19539754 [TBL] [Abstract][Full Text] [Related]
7. Contribution of dysferlin deficiency to skeletal muscle pathology in asymptomatic and severe dystroglycanopathy models: generation of a new model for Fukuyama congenital muscular dystrophy. Kanagawa M; Lu Z; Ito C; Matsuda C; Miyake K; Toda T PLoS One; 2014; 9(9):e106721. PubMed ID: 25198651 [TBL] [Abstract][Full Text] [Related]
8. Mutations in B3GALNT2 cause congenital muscular dystrophy and hypoglycosylation of α-dystroglycan. Stevens E; Carss KJ; Cirak S; Foley AR; Torelli S; Willer T; Tambunan DE; Yau S; Brodd L; Sewry CA; Feng L; Haliloglu G; Orhan D; Dobyns WB; Enns GM; Manning M; Krause A; Salih MA; Walsh CA; Hurles M; Campbell KP; Manzini MC; ; Stemple D; Lin YY; Muntoni F Am J Hum Genet; 2013 Mar; 92(3):354-65. PubMed ID: 23453667 [TBL] [Abstract][Full Text] [Related]
9. Mechanistic aspects of the formation of α-dystroglycan and therapeutic research for the treatment of α-dystroglycanopathy: A review. Taniguchi-Ikeda M; Morioka I; Iijima K; Toda T Mol Aspects Med; 2016 Oct; 51():115-24. PubMed ID: 27421908 [TBL] [Abstract][Full Text] [Related]
10. biAb Mediated Restoration of the Linkage between Dystroglycan and Laminin-211 as a Therapeutic Approach for α-Dystroglycanopathies. Gumlaw N; Sevigny LM; Zhao H; Luo Z; Bangari DS; Masterjohn E; Chen Y; McDonald B; Magnay M; Travaline T; Yoshida-Moriguchi T; Fan W; Reczek D; Stefano JE; Qiu H; Beil C; Lange C; Rao E; Lukason M; Barry E; Brondyk WH; Zhu Y; Cheng SH Mol Ther; 2020 Feb; 28(2):664-676. PubMed ID: 31843448 [TBL] [Abstract][Full Text] [Related]
12. Exclusion of WWP1 mutations in a cohort of dystroglycanopathy patients. Godfrey C; Clement E; Abbs S; Muntoni F Muscle Nerve; 2011 Sep; 44(3):388-92. PubMed ID: 21996799 [TBL] [Abstract][Full Text] [Related]
13. Prenatal muscle development in a mouse model for the secondary dystroglycanopathies. Kim J; Hopkinson M; Kavishwar M; Fernandez-Fuente M; Brown SC Skelet Muscle; 2016; 6():3. PubMed ID: 26900448 [TBL] [Abstract][Full Text] [Related]
14. Impaired viability of muscle precursor cells in muscular dystrophy with glycosylation defects and amelioration of its severe phenotype by limited gene expression. Kanagawa M; Yu CC; Ito C; Fukada S; Hozoji-Inada M; Chiyo T; Kuga A; Matsuo M; Sato K; Yamaguchi M; Ito T; Ohtsuka Y; Katanosaka Y; Miyagoe-Suzuki Y; Naruse K; Kobayashi K; Okada T; Takeda S; Toda T Hum Mol Genet; 2013 Aug; 22(15):3003-15. PubMed ID: 23562821 [TBL] [Abstract][Full Text] [Related]
15. Fukutin is prerequisite to ameliorate muscular dystrophic phenotype by myofiber-selective LARGE expression. Ohtsuka Y; Kanagawa M; Yu CC; Ito C; Chiyo T; Kobayashi K; Okada T; Takeda S; Toda T Sci Rep; 2015 Feb; 5():8316. PubMed ID: 25661440 [TBL] [Abstract][Full Text] [Related]
16. NAD+ improves neuromuscular development in a zebrafish model of FKRP-associated dystroglycanopathy. Bailey EC; Alrowaished SS; Kilroy EA; Crooks ES; Drinkert DM; Karunasiri CM; Belanger JJ; Khalil A; Kelley JB; Henry CA Skelet Muscle; 2019 Aug; 9(1):21. PubMed ID: 31391079 [TBL] [Abstract][Full Text] [Related]
17. Mechanisms of disease: congenital muscular dystrophies-glycosylation takes center stage. Martin PT Nat Clin Pract Neurol; 2006 Apr; 2(4):222-30. PubMed ID: 16932553 [TBL] [Abstract][Full Text] [Related]