These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
281 related articles for article (PubMed ID: 21826293)
1. Particle separation in microfluidics using a switching ultrasonic field. Liu Y; Lim KM Lab Chip; 2011 Sep; 11(18):3167-73. PubMed ID: 21826293 [TBL] [Abstract][Full Text] [Related]
2. Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW). Shi J; Huang H; Stratton Z; Huang Y; Huang TJ Lab Chip; 2009 Dec; 9(23):3354-9. PubMed ID: 19904400 [TBL] [Abstract][Full Text] [Related]
3. Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics. Yamada M; Seki M Lab Chip; 2005 Nov; 5(11):1233-9. PubMed ID: 16234946 [TBL] [Abstract][Full Text] [Related]
4. Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array. Choi S; Park JK Lab Chip; 2005 Oct; 5(10):1161-7. PubMed ID: 16175274 [TBL] [Abstract][Full Text] [Related]
5. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells. Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906 [TBL] [Abstract][Full Text] [Related]
8. Separation of mixtures of particles in a multipart microdevice employing insulator-based dielectrophoresis. Gallo-Villanueva RC; Pérez-González VH; Davalos RV; Lapizco-Encinas BH Electrophoresis; 2011 Sep; 32(18):2456-65. PubMed ID: 21874656 [TBL] [Abstract][Full Text] [Related]
9. Microfluidic device based on a micro-hydrocyclone for particle-liquid separation. Bhardwaj P; Bagdi P; Sen AK Lab Chip; 2011 Dec; 11(23):4012-21. PubMed ID: 22028066 [TBL] [Abstract][Full Text] [Related]
10. Towards the automation of micron-sized particle handling by use of acoustic manipulation assisted by microfluidics. Oberti S; Neild A; Möller D; Dual J Ultrasonics; 2008 Nov; 48(6-7):529-36. PubMed ID: 18649908 [TBL] [Abstract][Full Text] [Related]
11. Negative dielectrophoresis-based particle separation by size in a serpentine microchannel. Church C; Zhu J; Xuan X Electrophoresis; 2011 Feb; 32(5):527-31. PubMed ID: 21290386 [TBL] [Abstract][Full Text] [Related]
12. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects. Jellema LC; Mey T; Koster S; Verpoorte E Lab Chip; 2009 Jul; 9(13):1914-25. PubMed ID: 19532967 [TBL] [Abstract][Full Text] [Related]
13. Ultrasonic alignment of bio-functionalized magnetic beads and live cells in PDMS micro-fluidic channel. Islam AT; Siddique AH; Ramulu TS; Reddy V; Eu YJ; Cho SH; Kim C Biomed Microdevices; 2012 Dec; 14(6):1077-84. PubMed ID: 22983792 [TBL] [Abstract][Full Text] [Related]
14. Manipulating particles in microfluidics by floating electrodes. Yalcin SE; Sharma A; Qian S; Joo SW; Baysal O Electrophoresis; 2010 Nov; 31(22):3711-8. PubMed ID: 20945412 [TBL] [Abstract][Full Text] [Related]
15. A dielectrophoretic continuous flow sorter using integrated microelectrodes coupled to a channel constriction. Salomon S; Leichlé T; Nicu L Electrophoresis; 2011 Jun; 32(12):1508-14. PubMed ID: 21563186 [TBL] [Abstract][Full Text] [Related]
16. Rapid microfluidic separation of magnetic beads through dielectrophoresis and magnetophoresis. Krishnan JN; Kim C; Park HJ; Kang JY; Kim TS; Kim SK Electrophoresis; 2009 May; 30(9):1457-63. PubMed ID: 19425001 [TBL] [Abstract][Full Text] [Related]
17. Three-dimensional focusing of particles using negative dielectrophoretic force in a microfluidic chip with insulating microstructures and dual planar microelectrodes. Jen CP; Weng CH; Huang CT Electrophoresis; 2011 Sep; 32(18):2428-35. PubMed ID: 21874653 [TBL] [Abstract][Full Text] [Related]
18. Numerical and experimental evaluation of microfluidic sorting devices. Taylor JK; Ren CL; Stubley GD Biotechnol Prog; 2008; 24(4):981-91. PubMed ID: 19194907 [TBL] [Abstract][Full Text] [Related]
19. Continuous manipulation and separation of particles using combined obstacle- and curvature-induced direct current dielectrophoresis. Li M; Li S; Li W; Wen W; Alici G Electrophoresis; 2013 Apr; 34(7):952-60. PubMed ID: 23436345 [TBL] [Abstract][Full Text] [Related]
20. Ultrasonic manipulation of single cells. Wiklund M; Onfelt B Methods Mol Biol; 2012; 853():177-96. PubMed ID: 22323148 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]