These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 21826302)
1. Supramolecular polymer for explosives sensing: role of H-bonding in enhancement of sensitivity in the solid state. Gole B; Shanmugaraju S; Bar AK; Mukherjee PS Chem Commun (Camb); 2011 Sep; 47(36):10046-8. PubMed ID: 21826302 [TBL] [Abstract][Full Text] [Related]
2. Explosives sensing by using electron-rich supramolecular polymers: role of intermolecular hydrogen bonding in significant enhancement of sensitivity. Gole B; Song W; Lackinger M; Mukherjee PS Chemistry; 2014 Oct; 20(42):13662-80. PubMed ID: 25187022 [TBL] [Abstract][Full Text] [Related]
4. Polyfunctional Lewis acids: intriguing solid-state structure and selective detection and discrimination of nitroaromatic explosives. Swamy P CA; Thilagar P Chemistry; 2015 Jun; 21(24):8874-82. PubMed ID: 25950287 [TBL] [Abstract][Full Text] [Related]
5. Towards the Development of a Low-Cost Device for the Detection of Explosives Vapors by Fluorescence Quenching of Conjugated Polymers in Solid Matrices. Martelo LM; das Neves TFP; Figueiredo J; Marques L; Fedorov A; Charas A; Berberan-Santos MN; Burrows HD Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29099776 [TBL] [Abstract][Full Text] [Related]
6. π-Conjugated Porous Polymer Nanosheets for Explosive Sensing: Investigation on the Role of H-Bonding. Rajput SK; Kapoor A; Yogi A; Yarlagadda V; Mothika S Chem Asian J; 2024 Oct; ():e202400939. PubMed ID: 39354879 [TBL] [Abstract][Full Text] [Related]
7. Selective detection of trace nitroaromatic, nitramine, and nitrate ester explosive residues using a three-step fluorimetric sensing process: a tandem turn-off, turn-on sensor. Sanchez JC; Toal SJ; Wang Z; Dugan RE; Trogler WC J Forensic Sci; 2007 Nov; 52(6):1308-13. PubMed ID: 17944906 [TBL] [Abstract][Full Text] [Related]
8. Fluorescence chemical sensor for determining trace levels of nitroaromatic explosives in water based on conjugated polymer with guanidinium side groups. Mi HY; Liu JL; Guan MM; Liu QW; Zhang ZQ; Feng GD Talanta; 2018 Sep; 187():314-320. PubMed ID: 29853053 [TBL] [Abstract][Full Text] [Related]
9. Electron-Rich π-Extended Diindolotriazatruxene-Based Chemosensors with Highly Selective and Rapid Responses to Nitroaromatic Explosives. Li X; Wang C; Song W; Meng C; Zuo C; Xue Y; Lai WY; Huang W Chempluschem; 2019 Oct; 84(10):1623-1629. PubMed ID: 31943936 [TBL] [Abstract][Full Text] [Related]
11. Iptycene-based fluorescent sensors for nitroaromatics and TNT. Anzenbacher P; Mosca L; Palacios MA; Zyryanov GV; Koutnik P Chemistry; 2012 Oct; 18(40):12712-8. PubMed ID: 22930534 [TBL] [Abstract][Full Text] [Related]
12. Detection of nitroaromatic explosives using a fluorescent-labeled imprinted polymer. Stringer RC; Gangopadhyay S; Grant SA Anal Chem; 2010 May; 82(10):4015-9. PubMed ID: 20402483 [TBL] [Abstract][Full Text] [Related]
13. Supramolecular interactions playing an integral role in the near-infrared Raman "excitonic" enhancement observed in β-hematin (malaria pigment) and other related heme derivatives. Puntharod R; Webster GT; Asghari-Khiavi M; Bambery KR; Safinejad F; Rivadehi S; Langford SJ; Haller KJ; Wood BR J Phys Chem B; 2010 Sep; 114(37):12104-15. PubMed ID: 20804182 [TBL] [Abstract][Full Text] [Related]
14. Efficient sensing of explosives by using fluorescent nonporous films of oligophenyleneethynylene derivatives thanks to optimal structure orientation and exciton migration. Caron T; Pasquinet E; van der Lee A; Pansu RB; Rouessac V; Clavaguera S; Bouhadid M; Serein-Spirau F; Lère-Porte JP; Montméat P Chemistry; 2014 Nov; 20(46):15069-76. PubMed ID: 25257621 [TBL] [Abstract][Full Text] [Related]
15. Detection of nitroaromatic explosives based on photoluminescent polymers containing metalloles. Sohn H; Sailor MJ; Magde D; Trogler WC J Am Chem Soc; 2003 Apr; 125(13):3821-30. PubMed ID: 12656615 [TBL] [Abstract][Full Text] [Related]
16. Pyrene-functionalized ruthenium nanoparticles as effective chemosensors for nitroaromatic derivatives. Chen W; Zuckerman NB; Konopelski JP; Chen S Anal Chem; 2010 Jan; 82(2):461-5. PubMed ID: 20000846 [TBL] [Abstract][Full Text] [Related]
17. A new poly(phthalazine ether sulfone ketone)-coated fiber for solid-phase microextraction to determine nitroaromatic explosives in aqueous samples. Guan W; Xu F; Liu W; Zhao J; Guan Y J Chromatogr A; 2007 Apr; 1147(1):59-65. PubMed ID: 17346721 [TBL] [Abstract][Full Text] [Related]
18. Discrimination of nitroaromatics and explosives mimics by a fluorescent Zn(salicylaldimine) sensor array. Germain ME; Knapp MJ J Am Chem Soc; 2008 Apr; 130(16):5422-3. PubMed ID: 18376839 [TBL] [Abstract][Full Text] [Related]
19. Trace detection of explosive particulates with a phosphole oxide. Shiraishi K; Sanji T; Tanaka M ACS Appl Mater Interfaces; 2009 Jul; 1(7):1379-82. PubMed ID: 20355938 [TBL] [Abstract][Full Text] [Related]
20. Photophysical studies of anion-induced colorimetric response and amplified fluorescence quenching in dipyrrolylquinoxaline-containing conjugated polymers. Wu CY; Chen MS; Lin CA; Lin SC; Sun SS Chemistry; 2006 Mar; 12(8):2263-9. PubMed ID: 16363007 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]