These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 21826346)

  • 1. Multiple fluorescence ΔCIE and ΔRGB codes for sensing volatile organic compounds with a wide range of responses.
    Tian K; Hu D; Hu R; Wang S; Li S; Li Y; Yang G
    Chem Commun (Camb); 2011 Sep; 47(36):10052-4. PubMed ID: 21826346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Colorimetric sensor arrays for volatile organic compounds.
    Janzen MC; Ponder JB; Bailey DP; Ingison CK; Suslick KS
    Anal Chem; 2006 Jun; 78(11):3591-600. PubMed ID: 16737212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical waveguide sensor of volatile organic compounds based on PTA thin film.
    Abdurahman R; Yimit A; Ablat H; Mahmut M; Wang JD; Itoh K
    Anal Chim Acta; 2010 Jan; 658(1):63-7. PubMed ID: 20082775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of volatile organic compounds using porphyrin derivatives.
    Dunbar AD; Brittle S; Richardson TH; Hutchinson J; Hunter CA
    J Phys Chem B; 2010 Sep; 114(36):11697-702. PubMed ID: 20735119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A colorimetric sensor array for organics in water.
    Zhang C; Suslick KS
    J Am Chem Soc; 2005 Aug; 127(33):11548-9. PubMed ID: 16104700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane-introduced infrared spectroscopic chemical sensing method for the detection of volatile organic compounds in aqueous solutions.
    Yang J; Ramesh A
    Analyst; 2005 Mar; 130(3):397-403. PubMed ID: 15724171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of infrared chemical sensors modified with ZnO nanowires for the detection of volatile organic compounds.
    Yang J; Shih YR; Chen IC; Kuo CI; Huang YS
    Appl Spectrosc; 2005 Aug; 59(8):1002-8. PubMed ID: 16105208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. "Turn-on" fluorescence sensing of volatile organic compounds using a 4-amino-1,8-naphthalimide Tröger's base functionalised triazine organic polymer.
    Shanmugaraju S; Umadevi D; González-Barcia LM; Delente JM; Byrne K; Schmitt W; Watson GW; Gunnlaugsson T
    Chem Commun (Camb); 2019 Oct; 55(81):12140-12143. PubMed ID: 31531424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Copper(I) Metal-Organic Framework: Visual Sensor for Detecting Small Polar Aliphatic Volatile Organic Compounds.
    Yu Y; Ma JP; Zhao CW; Yang J; Zhang XM; Liu QK; Dong YB
    Inorg Chem; 2015 Dec; 54(24):11590-2. PubMed ID: 26645672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enantioselective sensing by luminescence.
    Accetta A; Corradini R; Marchelli R
    Top Curr Chem; 2011; 300():175-216. PubMed ID: 21516438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption behaviors of volatile organic compounds (VOCs) on porous clay heterostructures (PCH).
    Qu F; Zhu L; Yang K
    J Hazard Mater; 2009 Oct; 170(1):7-12. PubMed ID: 19505753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multichannel monolithic quartz crystal microbalance gas sensor array.
    Jin X; Huang Y; Mason A; Zeng X
    Anal Chem; 2009 Jan; 81(2):595-603. PubMed ID: 19090744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. δD and δ13C analyses of atmospheric volatile organic compounds by thermal desorption gas chromatography isotope ratio mass spectrometry.
    von Eckstaedt CV; Grice K; Ioppolo-Armanios M; Chidlow G; Jones M
    J Chromatogr A; 2011 Sep; 1218(37):6511-7. PubMed ID: 21807368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ZnO nanoparticle-modified infrared internal reflection elements for selective detection of volatile organic compounds.
    Huang GG; Wang CT; Tang HT; Huang YS; Yang J
    Anal Chem; 2006 Apr; 78(7):2397-404. PubMed ID: 16579626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Volatile organic compound sensing by quartz crystal microbalances coated with nanostructured macromolecular metal complexes.
    Kimura M; Sugawara M; Sato S; Fukawa T; Mihara T
    Chem Asian J; 2010 Apr; 5(4):869-76. PubMed ID: 20209575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual Colorimetric and Conductometric Responses of Silver-Decorated Polypyrrole Nanowires for Sensing Organic Solvents of Varied Polarities.
    Si P; Chen L; Yu L; Zhao B
    ACS Appl Mater Interfaces; 2018 Sep; 10(35):29227-29232. PubMed ID: 30124287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual fluorescence sensor for trace oxygen and temperature with unmatched range and sensitivity.
    Baleizão C; Nagl S; Schäferling M; Berberan-Santos MN; Wolfbeis OS
    Anal Chem; 2008 Aug; 80(16):6449-57. PubMed ID: 18651755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of a solid electrolyte CO(2) sensor for the analysis of standard volatile organic compound gases.
    Kida T; Seo MH; Kishi S; Kanmura Y; Yamazoe N; Shimanoe K
    Anal Chem; 2010 Apr; 82(8):3315-9. PubMed ID: 20337430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of multiple-strain algal sensor chips for the detection and identification of volatile organic compounds.
    Podola B; Nowack EC; Melkonian M
    Biosens Bioelectron; 2004 May; 19(10):1253-60. PubMed ID: 15046757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of volatile organic compounds in contaminated air using semipermeable membrane devices.
    Ly-Verdú S; Esteve-Turrillas FA; Pastor A; de la Guardia M
    Talanta; 2010 Mar; 80(5):2041-8. PubMed ID: 20152450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.