BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 21826361)

  • 1. Classification of cell types using a microfluidic device for mechanical and electrical measurement on single cells.
    Chen J; Zheng Y; Tan Q; Shojaei-Baghini E; Zhang YL; Li J; Prasad P; You L; Wu XY; Sun Y
    Lab Chip; 2011 Sep; 11(18):3174-81. PubMed ID: 21826361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput biophysical measurement of human red blood cells.
    Zheng Y; Shojaei-Baghini E; Azad A; Wang C; Sun Y
    Lab Chip; 2012 Jul; 12(14):2560-7. PubMed ID: 22581052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A microfluidic system for cell type classification based on cellular size-independent electrical properties.
    Zhao Y; Chen D; Luo Y; Li H; Deng B; Huang SB; Chiu TK; Wu MH; Long R; Hu H; Zhao X; Yue W; Wang J; Chen J
    Lab Chip; 2013 Jun; 13(12):2272-7. PubMed ID: 23640025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of microfluidic impedance cytometry enabling the quantification of specific membrane capacitance and cytoplasm conductivity from 100,000 single cells.
    Zhao Y; Wang K; Chen D; Fan B; Xu Y; Ye Y; Wang J; Chen J; Huang C
    Biosens Bioelectron; 2018 Jul; 111():138-143. PubMed ID: 29665553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single HeLa and MCF-7 cell measurement using minimized impedance spectroscopy and microfluidic device.
    Wang MH; Kao MF; Jang LS
    Rev Sci Instrum; 2011 Jun; 82(6):064302. PubMed ID: 21721710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo O2 measurement inside single photosynthetic cells.
    Bai SJ; Ryu W; Fasching RJ; Grossman AR; Prinz FB
    Biotechnol Lett; 2011 Aug; 33(8):1675-81. PubMed ID: 21476096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic device for cell capture and impedance measurement.
    Jang LS; Wang MH
    Biomed Microdevices; 2007 Oct; 9(5):737-43. PubMed ID: 17508285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microtrap electrode devices for single cell trapping and impedance measurement.
    Mondal D; Roychaudhuri C; Das L; Chatterjee J
    Biomed Microdevices; 2012 Oct; 14(5):955-64. PubMed ID: 22767244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insulator-based dielectrophoretic single particle and single cancer cell trapping.
    Bhattacharya S; Chao TC; Ros A
    Electrophoresis; 2011 Sep; 32(18):2550-8. PubMed ID: 21922497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A microfluidic system enabling continuous characterization of specific membrane capacitance and cytoplasm conductivity of single cells in suspension.
    Zhao Y; Chen D; Li H; Luo Y; Deng B; Huang SB; Chiu TK; Wu MH; Long R; Hu H; Wang J; Chen J
    Biosens Bioelectron; 2013 May; 43():304-7. PubMed ID: 23337259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Particle Self-Aligning, Focusing, and Electric Impedance Microcytometer Device for Label-Free Single Cell Morphology Discrimination and Yeast Budding Analysis.
    Xie X; Zhang Z; Ge X; Zhao X; Hao L; Cheng Z; Zhou W; Du Y; Wang L; Tian F; Xu X
    Anal Chem; 2019 Nov; 91(21):13398-13406. PubMed ID: 31596074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Label-free electrical discrimination of cells at normal, apoptotic and necrotic status with a microfluidic device.
    Gou HL; Zhang XB; Bao N; Xu JJ; Xia XH; Chen HY
    J Chromatogr A; 2011 Aug; 1218(33):5725-9. PubMed ID: 21774939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lab-on-a-chip device for continuous particle and cell separation based on electrical properties via alternating current dielectrophoresis.
    Cetin B; Li D
    Electrophoresis; 2010 Sep; 31(18):3035-43. PubMed ID: 20872609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impedance spectroscopy using maximum length sequences: application to single cell analysis.
    Gawad S; Sun T; Green NG; Morgan H
    Rev Sci Instrum; 2007 May; 78(5):054301. PubMed ID: 17552843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A microfluidic platform for 3-dimensional cell culture and cell-based assays.
    Kim MS; Yeon JH; Park JK
    Biomed Microdevices; 2007 Feb; 9(1):25-34. PubMed ID: 17103048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leukocyte analysis and differentiation using high speed microfluidic single cell impedance cytometry.
    Holmes D; Pettigrew D; Reccius CH; Gwyer JD; van Berkel C; Holloway J; Davies DE; Morgan H
    Lab Chip; 2009 Oct; 9(20):2881-9. PubMed ID: 19789739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tumor cell characterization and classification based on cellular specific membrane capacitance and cytoplasm conductivity.
    Zhao Y; Zhao XT; Chen DY; Luo YN; Jiang M; Wei C; Long R; Yue WT; Wang JB; Chen J
    Biosens Bioelectron; 2014 Jul; 57():245-53. PubMed ID: 24594591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On-chip micro-biosensor for the detection of human CD4(+) cells based on AC impedance and optical analysis.
    Mishra NN; Retterer S; Zieziulewicz TJ; Isaacson M; Szarowski D; Mousseau DE; Lawrence DA; Turner JN
    Biosens Bioelectron; 2005 Nov; 21(5):696-704. PubMed ID: 16242607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simple microfluidic method to select, isolate, and manipulate single-cells in mechanical and biochemical assays.
    Gabriele S; Versaevel M; Preira P; Théodoly O
    Lab Chip; 2010 Jun; 10(11):1459-67. PubMed ID: 20480111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiplexing microelectrodes for dielectrophoretic manipulation and electrical impedance measurement of single particles and cells in a microfluidic device.
    Geng Y; Zhu Z; Wang Y; Wang Y; Ouyang S; Zheng K; Ye W; Fan Y; Wang Z; Pan D
    Electrophoresis; 2019 May; 40(10):1436-1445. PubMed ID: 30706494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.