These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 21826510)
1. Stabilization of the As-contaminated soil from the metal mining areas in Korea. Ko MS; Kim JY; Bang S; Lee JS; Ko JI; Kim KW Environ Geochem Health; 2012 Jan; 34 Suppl 1():143-9. PubMed ID: 21826510 [TBL] [Abstract][Full Text] [Related]
2. Relative extraction ratio (RER) for arsenic and heavy metals in soils and tailings from various metal mines, Korea. Son HO; Jung MC Environ Geochem Health; 2011 Jan; 33 Suppl 1():121-32. PubMed ID: 21072568 [TBL] [Abstract][Full Text] [Related]
3. Chemical attenuation of arsenic by soils across two abandoned mine sites in Korea. Nam SM; Kim M; Hyun S; Lee SH Chemosphere; 2010 Nov; 81(9):1124-30. PubMed ID: 20869095 [TBL] [Abstract][Full Text] [Related]
4. Sequential soil washing techniques using hydrochloric acid and sodium hydroxide for remediating arsenic-contaminated soils in abandoned iron-ore mines. Jang M; Hwang JS; Choi SI Chemosphere; 2007 Jan; 66(1):8-17. PubMed ID: 16831457 [TBL] [Abstract][Full Text] [Related]
5. In situ chemical fixation of arsenic-contaminated soils: an experimental study. Yang L; Donahoe RJ; Redwine JC Sci Total Environ; 2007 Nov; 387(1-3):28-41. PubMed ID: 17673278 [TBL] [Abstract][Full Text] [Related]
6. Amendment of arsenic and chromium polluted soil from wood preservation by iron residues from water treatment. Nielsen SS; Petersen LR; Kjeldsen P; Jakobsen R Chemosphere; 2011 Jul; 84(4):383-9. PubMed ID: 21529888 [TBL] [Abstract][Full Text] [Related]
7. Does ochre have the potential to be a remedial treatment for As-contaminated soils? Olimah JA; Shaw LJ; Hodson ME Environ Pollut; 2015 Nov; 206():150-8. PubMed ID: 26162334 [TBL] [Abstract][Full Text] [Related]
8. Arsenic speciation and bioaccessibility in arsenic-contaminated soils: sequential extraction and mineralogical investigation. Kim EJ; Yoo JC; Baek K Environ Pollut; 2014 Mar; 186():29-35. PubMed ID: 24361561 [TBL] [Abstract][Full Text] [Related]
9. Factors influencing As(V) stabilization in the mine soils amended with iron-rich materials. Kim M; Kim J; Kim M; Kim YS; Nam SM; Moon DH; Hyun S Environ Sci Pollut Res Int; 2018 Sep; 25(27):26757-26765. PubMed ID: 28871496 [TBL] [Abstract][Full Text] [Related]
10. Investigation and risk assessment modeling of As and other heavy metals contamination around five abandoned metal mines in Korea. Kim JY; Kim KW; Ahn JS; Ko I; Lee CH Environ Geochem Health; 2005 Apr; 27(2):193-203. PubMed ID: 16003587 [TBL] [Abstract][Full Text] [Related]
11. Arsenic mobility in the amended mine tailings and its impact on soil enzyme activity. Koo N; Lee SH; Kim JG Environ Geochem Health; 2012 Jun; 34(3):337-48. PubMed ID: 21850414 [TBL] [Abstract][Full Text] [Related]
12. Arsenic availability in rice from a mining area: is amorphous iron oxide-bound arsenic a source or sink? Liu C; Yu HY; Liu C; Li F; Xu X; Wang Q Environ Pollut; 2015 Apr; 199():95-101. PubMed ID: 25638690 [TBL] [Abstract][Full Text] [Related]
13. Leachability of arsenic and heavy metals from mine tailings of abandoned metal mines. Lim M; Han GC; Ahn JW; You KS; Kim HS Int J Environ Res Public Health; 2009 Nov; 6(11):2865-79. PubMed ID: 20049231 [TBL] [Abstract][Full Text] [Related]
14. Exposure assessment for the abandoned metal mine area contaminated by arsenic. Chang JY; Ahn SC; Lee JS; Kim JY; Jung AR; Park J; Choi JW; Do Yu S Environ Geochem Health; 2019 Dec; 41(6):2443-2458. PubMed ID: 31016607 [TBL] [Abstract][Full Text] [Related]
15. Solidification of arsenic and heavy metal containing tailings using cement and blast furnace slag. Kim JW; Jung MC Environ Geochem Health; 2011 Jan; 33 Suppl 1():151-8. PubMed ID: 21063751 [TBL] [Abstract][Full Text] [Related]
16. Assessment of the stabilization of heavy metal contaminants in soils using chemical leaching and an earthworm bioassay. Abd Aziz A; Lee BT; Han HJ; Kim KW Environ Geochem Health; 2019 Feb; 41(1):447-460. PubMed ID: 30132092 [TBL] [Abstract][Full Text] [Related]
17. Arsenic partitioning among particle-size fractions of mine wastes and stream sediments from cinnabar mining districts. Silva V; Loredo J; Fernández-Martínez R; Larios R; Ordóñez A; Gómez B; Rucandio I Environ Geochem Health; 2014 Oct; 36(5):831-43. PubMed ID: 24729075 [TBL] [Abstract][Full Text] [Related]
18. Stabilization mechanism of arsenic in mine waste using basic oxygen furnace slag: The role of water contents on stabilization efficiency. Kim SH; Jeong S; Chung H; Nam K Chemosphere; 2018 Oct; 208():916-921. PubMed ID: 30068035 [TBL] [Abstract][Full Text] [Related]
19. Effect of chemical amendments on remediation of potentially toxic trace elements (PTEs) and soil quality improvement in paddy fields. Kim SC; Hong YK; Oh SJ; Oh SM; Lee SP; Kim DH; Yang JE Environ Geochem Health; 2017 Apr; 39(2):345-352. PubMed ID: 28213721 [TBL] [Abstract][Full Text] [Related]
20. Stabilization and solidification of arsenic contaminated silty sand using alkaline activated slag. Komaei A; Noorzad A; Ghadir P J Environ Manage; 2023 Oct; 344():118395. PubMed ID: 37343471 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]